
Verified Classification using Deep Neural Networks with
Perturbation Analysis

PATRICK DEUTSCHMANN and LUKAS TIMPL
This report describes our submission to the Siemens AI Dependability Assessment. It solves a binary classification
task using a deep neural network and provides security guarantees for local robustness using perturbation
analysis based on linear relaxation. Our model displays high predictive performance, gives provable safety
guarantees, scales well to more complex data sets, and lets domain experts dynamically configure the class-wise
cost of misclassification.

Contents

Abstract 1
Contents 1
1 Introduction 1
1.1 Data sets 2
2 Possible Solutions and Related Work 2
2.1 Baselines 3
3 Approach 4
3.1 Model 4
3.2 Verification 4
3.3 User configuration 5
4 Experiments 6
4.1 Metrics 6
4.2 Architecture Search 6
4.3 Results 7
5 Discussion 9
References 10

1 INTRODUCTION
The challenge task of the Siemens AI Dependability Assessment1 was to solve a 2D binary classi-
fication problem, i.e. a binary function 𝑓 (xi) classifies a data point xi = (𝑥1𝑖 , 𝑥2𝑖) as either 𝑙𝑖 = 0
(green) or 𝑙𝑖 = 1 (red). With only two dimensions, the data sets are rather simple, yet the approach
should also scale to inputs of higher dimensions. Most importantly, however, 𝑓 (x𝑖) should provide
safety guarantees. This means that the ML model must not only have high predictive capabilities
but also must be able to produce provably reliable results under certain assumptions. Furthermore,
the setting is chosen such that misclassification costs are not equal for the two classes. Following
the analogy of traffic lights, it is more dangerous (costly) to classify a red sample as green than
classifying a green sample as red. It is given that the training data is labelled correctly and that the
classes do not overlap.

1https://ecosystem.siemens.com/ai-da-sc

Authors’ address: Patrick Deutschmann, patrick.deutschmann@student.tugraz.at; Lukas Timpl, lukas.timpl@student.tugraz.
at.

https://ecosystem.siemens.com/ai-da-sc

2 Patrick Deutschmann and Lukas Timpl

(a) 1,000 samples (b) 5,000 samples (c) 50,000 samples

Fig. 1. The data sets of the challenge differ significantly in size, class balance and separability.

Our solution aims at striking the ideal balance of these criteria in that it displays high predictive
performance, gives provable safety guarantees, scales well to more complex data sets, and lets
domain experts dynamically configure the class-wise cost of misclassification.
The architecture we chose is a deep neural network trained with cost-weighted binary cross-

entropy loss. The safety guarantees follow the assumption of reliable training inputs. Using Linear
Relaxation Based Perturbation Analysis (LiRPA), we can guarantee stable predictions in the 𝜖-
neighbourhood of previously seen samples. 2

1.1 Data sets
Fig. 1 shows the three data sets of the challenge. Before we started our experiments, we analysed
them and found that they differ in multiple critical aspects.
(1) Size: The data sets vary in size, with A being the smallest and C the biggest.
(2) Class balance: While data set B is relatively balanced, A and C show significant imbalance

with a ratio of roughly 2:1 and 10:1, respectively, where class 0 (green) is the overrepresented
one.

(3) Separability: It is easy to see that data set B can be separated by drawing a simple sine-like
wave across the two dimensions and data set C by using multiple ellipses. For data set A,
however, it is harder to make out a clear trend. There are several cases where green and red
samples are very close to each other, and accurately separating classes will prove difficult.

Thus, while we employ the same general approach for all three data sets, we tune our hyper-
parameters separately to obtain ideal performance.

2 POSSIBLE SOLUTIONS AND RELATEDWORK
Before choosing an approach, we analysed the core aspect of safety guarantees and possible
assumptions. In particular, we looked at two possibilities of formulating guarantees for our problem:
(a) expressing uncertainty for a given sample and (b) robustness against local perturbations.

The former addresses the problem that most machine learning approaches always produce an
answer, even if they encounter inputs the like of which they have never seen before. In that case,
they should be highly unsure about their prediction but mostly fail to express that. One way to
counter this are Bayesian Neural Networks (BNNs) [2]. In a probabilistic manner, they place a
distribution over the network parameters. They can, hence, express their uncertainty in case they
see challenging inputs. This could be very useful in a security-critical environment and would, for
instance, allow an autonomous vehicle to alert its driver if it is unable to deal with a particular
situation. However, it does not strictly correspond to the challenge description where security

2All code is provided as a ZIP file attached to this report.

Verified Classification using Deep Neural Networks with Perturbation Analysis 3

Data set A B C
Model LR NB SVM GB LR NB SVM GB LR NB SVM GB

Train Acc. 0.67 0.77 0.87 0.96 0.85 0.85 0.89 0.996 0.91 0.91 0.91 0.96
F1 0.81 0.73 0.87 0.96 0.85 0.85 0.89 0.996 0.95 0.95 0.95 0.96

Val. Acc. 0.67 0.75 0.84 0.92 0.88 0.88 0.90 0.984 0.91 0.91 0.91 0.96
F1 0.80 0.71 0.83 0.92 0.88 0.88 0.90 0.984 0.95 0.95 0.95 0.96

Table 1. Results of baseline models

guarantees for unseen inputs should be made. A BNN would require a concrete input x𝑖 to express
its certainty.

Therefore, we to decided pursue the goal of (b), meaning that we made our model robust against
local perturbations. Simply put, this means that the model should reliably label unseen samples
that lie near known training samples with the same class as the known sample. We put forward a
more formal definition in Subsection 3.2.
It is trivial to give such guarantees for simple models: For logistic regression and k-nearest-

neighbours, the decision boundary can be used to derive them. For naive Bayes classifiers, confidence
intervals can be directly computed. Some of these classifiers would also perform relatively well on
the given data sets, which is why we use them as baselines for our final model (see Subsection 2.1).
However, they would not scale well to higher dimensions and more complex problems.

More complicated models include support vector machines (SVM) and Gaussian Processes (GP)
for classification. SVM can be powerful, especially with RBF kernels, but cannot provide the
guarantees we require. GP would provide us with empirical confidence intervals but becomes
inefficient in higher dimensions. Furthermore, both approaches are not leading in state-of-the-art
predictive capabilities for challenging tasks, especially in the vision domain.

Another powerful class of machine learning models are decision trees and random forests. They
display high predictive capabilities and can also be verified, but as [7] found, verification time does
not scale very well to larger models. However, there might very well exist verification techniques
for tree-based models that could suit this challenge but that we are unaware of at this time.
Finally, we arrive at deep neural networks, which have received much attention in recent

machine learning history. They scale well to very complex problems but used to be considered
textbook examples for black-box models. However, recently, there has been a lot of work focused
on explainability and defence against adversarial samples. It started with approaches that provided
exact upper and lower bounds for neural network outputs given certain input perturbations.
Reluplex [5] is an example that, however, only works for networks with ReLU activations. Further
research introduced methods that work with arbitrary activations and use linear relaxations that
compute tight approximations to significantly improve performance, allowing these techniques to
be scaled to larger networks. Such work includes IBP [3], CROWN [9] and DeepPoly [6]. We decided
to use AutoLiRPA [8], a framework that applies these techniques to general neural networks and
allows for automatic analysis on computational graphs.

2.1 Baselines
To warrant the use of a complex deep neural network, we made sure that it exceeds the performance
of simpler models. We established baselines with logistic regression (LR), Gaussian naive Bayes (NB),
SVM with an RBF kernel (SVM) and a gradient boosting classifier (GB) as depicted in Table 1. We
observe that gradient boosting performs best for all data sets, followed by SVM. Data set A seems
to be the most challenging one, probably due to the small sample size and irregular separability.

4 Patrick Deutschmann and Lukas Timpl

XXXXXXXXXXTrue
Predicted 0 (green) 1 (red)

0 (green) 𝑐0,0 = 0 𝑐0,1
1 (red) 𝑐1,0 𝑐1,1 = 0

Table 2. Cost matrix for classifications

3 APPROACH
We model the safety criticality of our classifier’s decisions using a cost matrix illustrated in Table 2.
Correctly classifying a sample obviously does not incur any cost, i.e. 𝑐0,0 = 𝑐1,1 = 0. In our particular
example, assigning label 0 (green) to a data point with true label 1 (red) is safety-critical and
therefore the associated cost 𝑐1,0 should greatly exceed the cost 𝑐0,1 of assigning label 1 (red) to true
label 0. Concrete values for 𝑐0,1 and 𝑐1,0 can be set by the users of our approach. The algorithm then
minimises the total cost. If 𝑐0,1 = 𝑐1,0, this is equivalent to maximising accuracy.

3.1 Model
The model we use is a deep neural network implemented in PyTorch. It receives as input a 2D
training sample, processes it through several hidden layers with ReLU activations and finally
outputs a single scalar, activated through the sigmoid function 𝜎 (𝑎𝑖). If the output is smaller than
0.5, class 0 is assigned, class 1 otherwise. We use double weighted binary cross-entropy as our loss
function, where we define the loss for one sample 𝑖 as

𝑙𝑖 = −𝑤𝑖 [𝑝𝑦𝑖 log𝜎 (𝑎𝑖) + (1 − 𝑦𝑖) log(1 − 𝜎 (𝑎𝑖))] . (1)

𝑎𝑖 is the output of the neural network before activated in sigmoid and 𝑦𝑖 is the correct label. To
counter class imbalance, we set

𝑤𝑖 =

{ # class 0 samples
class 1 samples if 𝑦𝑖 = 1,
1 otherwise.

(2)

This will cause the training samples of the underrepresented class to be weighted higher and
thereby offset the imbalance. Additionally to that, we set the weight for positive examples 𝑝 =

𝑐1,0
𝑐0,1

to account for the costs of misclassification that differ per class.

3.2 Verification
Relying on the assumption that our training samples are correctly labelled, we want to guarantee
for a certain number of samples, which we call verified, that all inputs surrounding them are
assigned the same class as the centre. Formally, we define a neighbourhood around training sample
x𝑖 as an 𝐿𝑝-ball with radius 𝜖 . We then guarantee for all possible inputs that lie within this ball
𝐵𝜖 (x𝑖) = {y ∈ R : | |x𝑖 − y| |𝑝 < 𝜖} that they are assigned 𝑙𝑖 . In our implementation, we support both
the 𝐿2 and the 𝐿∞-norm. Under the assumption that an unseen data point lies within the defined
neighbourhood of a known training sample, we can give a probability that this new data point will
be correctly classified based on the percentage of training samples that are verified, i.e.

accverified (𝜖) : = 𝑝 (𝑓 (y𝑖) = 𝑙𝑖 |∃x𝑗 : y𝑖 ∈ 𝐵𝜖 (x𝑗) ∧ 𝑙 𝑗 = 𝑙𝑖) (3)

=
verified and correctly classified samples

samples
(4)

where x𝑗 is a sample of the training data set.

Verified Classification using Deep Neural Networks with Perturbation Analysis 5

(a) 𝐿2-norm (b) 𝐿∞-norm

Fig. 2. Illustration of verified samples for 𝜖 = 0.025. The boxes or circles (for 𝐿∞-norm or 𝐿2-norm respectively)
denote the area of which we can guarantee that all samples within will be assigned the same class as the
training sample in the middle, i.e. all inputs in red boxes/circles will be classified as 1, all inputs in green
boxes/circles as 0.

We call this metric verified accuracy, inspired by the verified accuracy under IBP verification
as proposed in [4]. The smaller the 𝜖-neighbourhood becomes, the closer the verified accuracy
approaches the accuracy, i.e. lim𝜖→0 accverified (𝜖) = acc. The concept is illustrated in Figure 2.

The challenging aspect of this verification is to show for all data points y ∈ 𝐵𝜖 (x𝑖) that they indeed
are labelled with the same class as x𝑖 . As there exist infinitely many such inputs, it is impossible to
let the model classify them all and check empirically. We, therefore, use the AutoLiRPA framework
[8] to compute bounds for the outputs of our network. It computes for a set of inputs (which we
provide as a training sample and its 𝜖-neighbourhood) the worst-case lower and upper bounds for
the output of a neural network. It achieves this by simplifying the network to a linear function and
using upper and lower bounds to replace non-linear units. Using this, it can propagate the bounds
through the model and, in the end, provide the bounds for the entire network.

For our verification, we compute upper (𝑎upper) and lower (𝑎lower) bounds for every sample in our
training data set, compute the respective sigmoid activations and check whether both the upper
and the lower bound would result in the same prediction. If they do, we can guarantee that all
inputs y ∈ 𝐵𝜖 (x𝑖) are classified as 𝑙𝑖 . Otherwise, we cannot make that statement, and somewhere
in the 𝜖-neighbourhood of xi there exist inputs that our model would classify as 1 − 𝑙𝑖 .

3.3 User configuration
To summarise, we ask the users of our model to configure the following critical parameters:

(1) Perturbation 𝜖 : The perturbation controls for how large a neighbourhood of training samples
we can assume that the classification should be the same as the centre sample. Low values
can be chosen if the sensors with which the data was measured are very accurate, high values
otherwise. A low 𝜖 will result in a verified accuracy close to the general accuracy; a high one
will lead to more considerable divergence.

6 Patrick Deutschmann and Lukas Timpl

(2) Norm (𝐿2 or 𝐿∞): The perturbation norm controls the p-norm that is used for the 𝐿𝑝-ball
of the neighbourhood. If we assume that all sensors will diverge to degree 𝜖 , we could, for
example, set this to 𝐿∞. If the total deviations are expected to be in that range, 𝐿2-norm
might be better suited. Note that while we have only implemented 𝐿2 or 𝐿∞, all p-norms can
theoretically be used.

(3) Costs of misclassification 𝑐0,1 and 𝑐1,0: These values should reflect the class-wise cost
associated with misclassification as shown in Table 2.

4 EXPERIMENTS
After fixing the approach, we conducted numerous experiments to find the ideal network architec-
ture that performs best for the individual data sets.

4.1 Metrics
We use various metrics, which allow us to compare the results given the imbalanced data sets, the
verification capability, and the safety-related cost associated with misclassification.

• Precision, Recall, F1: For classification tasks on imbalanced data sets, precision, recall,
and F1 score are commonly used to compare model performance. They help to capture the
trade-off between true-positive and false-positive predictions better than accuracy. We use
the F1 score during training to monitor our model’s performance and compare final models.
Additionally to the individual class scores, we compute the macro average over the F1 score
of both classes. This means both labels are valued equally even though they might have a
different number of samples. Therefore, the score would be low if the model only performed
well on the class representing the majority of the data points, which is not the case for
standard accuracy. For brevity reasons, we only report the combined score in our results.

• Classification cost: Our evaluation also captures the varying misclassification costs of the
two classes as total classification cost. It is defined as the sum of all misclassifications weighted
with the associated cost. Furthermore, we introduce the metric classification cost per sample
which allows us to compare the metric on data sets with a different number of samples.

• Verified Accuracy: The verified accuracy which we introduced in Section 3 can quantify
the probability of classifying an unseen data point correctly. This metric helps us evaluate
the dependability of our model and provides a lower bound for the achieved accuracy of our
model.

• Misclassification Error: Under the above assumptions, the misclassification error is simply
1 − accverified.

In the end, we optimise our model for minimal classification cost. Depending on the 𝜖 chosen by
the user, we achieve varying verified accuracies and misclassification errors.

4.2 Architecture Search
Due to the simplicity of the data sets, we only use simple multilayer perceptron (MLP) architectures.
We experiment with between 1 and 4 hidden layers and different numbers of neurons as well as
regularisation techniques such as weight decay and dropout regularisation. We train the model
using Adam with a batch size of 32 and varying learning rates. To perform the architecture search,
we use the metric classification cost per sample. This metric helps us find a suitable model with
respect to our security metrics. We utilise Weights & Biases [1] for tracking our experiments and
for visualising the results.3

3An interactive report of our model’s results can be found here.

https://wandb.ai/implication-elimination/dependable-classification/reports/Siemens-AI-Dependability-Assessment-Results--Vmlldzo2NTQ4Mjc?accessToken=r8qsleb47wg3u5sn41lh88rtdm81ryukk6t45jch44sjpc715mdxkd1nz7zd4htv

Verified Classification using Deep Neural Networks with Perturbation Analysis 7

A big problem for neural networks is overfitting, meaning that the network will end up fitting
the training data very well but will fail to generalise to new unseen data. To prevent this, we use
20% of the given data as validation data set. During training, we monitor the validation loss and
use early stopping to prevent the network from overfitting.

4.3 Results
In this section, we list our achieved results on the data sets under our previously defined performance
metrics. Amongst our metrics, the cost per sample gives a good indication of the performance with
respect to the misclassification cost, while the verified accuracy provides a lower bound for the
achieved accuracy under the respective 𝜖-assumption. The corresponding misclassification error
can be computed as one minus the verified accuracy.
We perform experiments where we change the defined costs to be in line with the security

aspect of the challenge. Namely, while keeping the cost 𝑐0,1 (not security-critical) constant to 1,
we alternate between cost values 1, 10 and 50 for 𝑐1,0 (security-critical). For each data set, we are
able to match or exceed the established baselines for a cost of 1:1. In Figure 3 we illustrate the
performance of the trained model on data set B for varying costs. While for 𝑐1,0 = 1 there are a
number of security-critical misclassifications (marked as red crosses), for 𝑐1,0 = 10 we only observe
two such misclassification and for 𝑐1,0 = 50 the model does not make any. Furthermore, these
results are achieved on the validation set, indicating the generalised capability of the model to
respect the defined safety cost.

Data set A. For data set A, we use four hidden layers, each with 200 neurons and a learning rate of
0.002. We also use weight decay with 𝜆 = 0.0001 to prevent overfitting. In our experience, it was the
most challenging data set. The results are listed in Table 3. We exceed the baseline accuracy for cost
𝑐1,0 = 1 and still achieve good performance with cost 𝑐1,0 = 10. Only for 𝑐1,0 = 50 the performance
starts to degrade as the network gets more careful, and there is a safety-accuracy trade-off.

Cost 𝑐1,0 = 1 𝑐1,0 = 10 𝑐1,0 = 50
𝜖 0.001 0.01 0.025 0.001 0.01 0.025 0.001 0.01 0.025

Full Verified Acc. 0.9680 0.9090 0.7250 0.9080 0.8540 0.7210 0.69500 0.6540 0.5850

Train
Accuracy 0.9750 0.9200 0.6975

F1 0.9748 0.8881 0.7536
Cost/Sample 0.0250 0.0800 0.3025

Validation
Accuracy 0.9450 0.8800 0.7050

F1 0.9384 0.8427 0.7158
Cost/Sample 0.0550 0.3000 0.5400

Table 3. Results for data set A

Data set B. For data set B, we use two hidden layers, each with 64 neurons and a learning rate of
0.0003. The results are listed in Table 4. In our experiments, data set B was the least challenging
one, and we achieve excellent scores across all metrics with accuracy scores of around 99%.

8 Patrick Deutschmann and Lukas Timpl

(a) 𝑐1,0 = 1 (b) 𝑐1,0 = 10

(c) 𝑐1,0 = 50

Fig. 3. Predictions for data set B on the validation set for 𝜖 = 0.01 with varying security-critical misclassifica-
tion costs 𝑐1,0

Cost 𝑐1,0 = 1 𝑐1,0 = 10 𝑐1,0 = 50
𝜖 0.001 0.01 0.025 0.001 0.01 0.025 0.001 0.01 0.025

Full Verified Acc. 0.9864 0.8804 0.6836 0.9854 0.8880 0.7052 0.9760 0.8802 0.6514

Train
Acc. 0.9915 0.9918 0.9810
F1 0.9859 0.9813 0.9521

Cost/Sample 0.0085 0.0105 0.0190

Val
Acc. 0.9880 0.9890 0.9850
F1 0.9888 0.9892 0.9869

Cost/Sample 0.0012 0.0290 0.0150
Table 4. Results for data set B

Verified Classification using Deep Neural Networks with Perturbation Analysis 9

Data set C. For data set C, we used two hidden layers with 256 neurons and a learning rate of 0.001.
We list the results in Table 5. The biggest challenge with this data set was the high imbalance in
the number of labels between the classes. However, as we adapted our loss function accordingly,
we achieved rather good results around 98% accuracy for 𝑐1,0 = 1. As the cost increases, we can see
a safety-accuracy trade-off where the system gets very cautious, and the accuracy does suffer a bit.

Cost 𝑐1,0 = 1 𝑐1,0 = 10 𝑐1,0 = 50
𝜖 0.001 0.01 0.025 0.001 0.01 0.025 0.001 0.01 0.025

Full Verified Acc. 0.9749 0.8854 0.6563 0.9408 0.8636 0.6316 0.8769 0.8055 0.5660

Train
Acc. 0.9806 0.9467 0.8837
F1 0.8880 0.7830 0.7247

Cost/Sample 0.0194 0.0526 0.1163

Val.
Acc. 0.9785 0.9483 0.8833
F1 0.9229 0.8335 0.7591

Cost/Sample 0.0215 0.0526 0.1216
Table 5. Results for data set C

5 DISCUSSION
In this work, we have proposed a solution for estimating the dependability of neural networks and
giving safety guarantees for local robustness in a classification setting.

While we only applied our approach to simple two-dimensional input data, it can easily be scaled
to higher dimensions by using more complex models. This is also possible because bounds can be
computed rather quickly as compared to the exact methods described in Section 2. Due to the high
predictive capabilities of neural networks in various domains, the proposed solution can be applied
to a multitude of different problems. Furthermore, the library we used, AutoLiRPA [8], can also be
used for more complex architectures such as convolutional networks, recurrent neural networks,
or transformers and thereby verify results for state-of-the-art models for challenging problems in,
for example, computer vision.
The main limitations of our approach lie in the necessary assumptions, i.e. the requirement of

correctly labelled input data and the premise that new samples are located within the 𝜖-neighbour-
hood of existing training samples, as discussed in Section 3. We cannot give guarantees for inputs,
the like of which our model has never seen before. That, however, lies in the nature of data-driven
prediction models. While for these simple data sets other approaches might be less resource-
intensive, they do not possess the predictive capabilities of neural networks and do not perform as
well on other, more complex domains.

The definition of an 𝜖-neighbourhood can be used to estimate the dependability of our system
and can be adapted to the requirements of a given application. In conjunction with the cost matrix,
which allows us to configure the desired safety-accuracy trade-off, this renders our system adaptable
to a variety of safety-critical applications.We, hence, believe that our model strikes a good balance in
this environment of demanding requirements and can be incorporated well into safety verification
solutions.

10 Patrick Deutschmann and Lukas Timpl

REFERENCES
[1] Lukas Biewald. 2020. Experiment Tracking with Weights and Biases. https://www.wandb.com/ Software available

from wandb.com.
[2] Ethan Goan and Clinton Fookes. 2020. Bayesian Neural Networks: An Introduction and Survey. Lecture Notes in

Mathematics (2020), 45–87. https://doi.org/10.1007/978-3-030-42553-1_3
[3] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Uesato, Relja Arandjelovic,

Timothy Mann, and Pushmeet Kohli. 2019. On the Effectiveness of Interval Bound Propagation for Training Verifiably
Robust Models. arXiv:1810.12715 [cs.LG]

[4] Po-Sen Huang, Robert Stanforth, Johannes Welbl, Chris Dyer, Dani Yogatama, Sven Gowal, Krishnamurthy Dvijotham,
and Pushmeet Kohli. 2019. Achieving verified robustness to symbol substitutions via interval bound propagation. arXiv
preprint arXiv:1909.01492 (2019).

[5] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. 2017. Reluplex: An efficient SMT solver
for verifying deep neural networks. In International Conference on Computer Aided Verification. Springer, 97–117.

[6] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. An abstract domain for certifying neural
networks. Proceedings of the ACM on Programming Languages 3, POPL (2019), 1–30.

[7] John Törnblom and Simin Nadjm-Tehrani. 2018. Formal verification of random forests in safety-critical applications. In
International Workshop on Formal Techniques for Safety-Critical Systems. Springer, 55–71.

[8] Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya Kailkhura, Xue Lin, and Cho-
Jui Hsieh. 2020. Automatic Perturbation Analysis for Scalable Certified Robustness and Beyond. arXiv:2002.12920 [cs.LG]

[9] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. 2018. Efficient neural network robustness
certification with general activation functions. arXiv preprint arXiv:1811.00866 (2018).

https://www.wandb.com/
https://doi.org/10.1007/978-3-030-42553-1_3
https://arxiv.org/abs/1810.12715
https://arxiv.org/abs/2002.12920

	Abstract
	Contents
	1 Introduction
	1.1 Data sets

	2 Possible Solutions and Related Work
	2.1 Baselines

	3 Approach
	3.1 Model
	3.2 Verification
	3.3 User configuration

	4 Experiments
	4.1 Metrics
	4.2 Architecture Search
	4.3 Results

	5 Discussion
	References

