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This project introduces an air pollution prediction model based on a graph neural network (GNN). It dis-
tinguishes itself from similar approaches in that its core component is an interpretable pollution transfer
matrix that can be used to analyse the influence of specific locations on different ones. The model achieves
performances comparable to the state-of-the-art for short-term predictions while also explaining its results.
Moreover, it can simulate how reducing emissions at one location would impact air pollution in the area.

1 INTRODUCTION
In recent years, air pollution has become an increasingly influential factor in human health. With
the industrialisation of more and more parts of the world and ever-growing economic output, it
has increased steadily and become an important research area. In its Air Quality Guidelines [15],
the WHO cites robust scientific evidence that air pollutants can severely affect human health in
a variety of ways. One way of measuring air pollution is PM2.5 (particles with diameters of 2.5
micrometres and less). As shown in [4], it is absorbed by the lungs, and extensive exposure can lead
to several neurodevelopmental disorders, including autism, attention deficit disorder, and cognitive
delays.

Air pollutants can be grouped into two categories: Primary pollutants that are directly emitted
into the air and secondary pollutants that are formed by chemical reactions with the atmosphere
itself. Depending on the type of pollutant, they can also be transferred over long distances with
the wind. The emission of primary pollutants can either have natural causes or can be caused by
human behaviour, i.e. road transport or stationary combustion, for example, in factories. Secondary
pollutants include ozone and oxides of nitrogen and are heavily influenced by weather conditions.
The characteristics of the air pollutant PM2.5 are depicted in Figure 1.

The variety of influence factors renders modelling PM2.5 non-trivial. This project aims at ac-
curately predicting its concentration at different stations considering weather information, date
and transfer events while also remaining interpretable with respect to the local influences. It does
so using a graph neural network (GNN) that takes as input historical PM2.5 values and weather
information to predict the PM2.5 concentration in the future.

In short, our contributions are as follows:
• We extend existing approaches of PM2.5 prediction by an interpretable transfer matrix and
obtain results comparable to the state-of-the-art for our predictions.

• We show how to analyse influences of surrounding cities on local PM2.5 concentration.
• We demonstrate an approach that allows our transfer matrix to be used for simulations about
the impact of local pollution reduction. For example, we can predict how much the air quality
at a particular measurement station would be improved if the emissions of a nearby factory
were reduced by a certain factor.

2 RELATEDWORK
Traditional approaches for predicting air pollution such as [8, 19] rely on physical and chemical
models that build on expert knowledge. While they utilise much scientific understanding of the
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Fig. 1. This figure from [23] demonstrates the characteristics of PM2.5 that are highly influenced by weather
conditions. The background colour indicates the concentration, blue arrows show spatial transfers due to
wind, and the orange dotted arrows indicate dispersion effects that occur over time.

underlying phenomena, they are often computationally expensive and display inaccuracies if
circumstances occur that are not considered in the models [25].

Hence, data-driven approaches that suppose much less domain knowledge and rely on advances
in machine learning to make their predictions are commonly used today. They reach from techno-
logically simpler, but interpretable models such as GAMs [5] to complicated deep learning models.
[6] groups the latter into

• models that perform fine-grained air pollution estimation, i.e. models that make spatial
predictions for locations for which there are no measurements available,

• temporal models that produce air pollution forecasts and
• models that do both, such as [6].

There exist spatial models that build on attention mechanisms [3] and physically-inspired
dispersion models that learn their parameters using deep autoencoders with convolutional LSTMs
[14]. Forecast models, such es the one implemented in this paper can be based on RNNs [1, 9],
ensembles [24] or perform hybrid spatio-temporal modelling, i.e. use both temporal and spatial
aspects for their forecasts. These approaches typically build on graphs for the different measurement
stations [11] and either use convolutions [17], attention [22] or recurrent units [23].

While these approaches yield good predictive performance, they are not interpretable by design.
They consider transfers of air pollution but cannot explain the influences of different cities on
the predictions. This project aims at resolving the issue while achieving comparable performance.
There exist model-agnostic approaches that add interpretability to deep learning models, such as
SHAP [13], that could also be applied to air pollution prediction. However, they would not directly
give insights about the transfers and could not support simulations due to their post hoc nature.

3 METHODOLOGY
This section describes the precise problem this project is addressing, the data used, and the model
proposed.

3.1 Problem formulation
The problem addressed in this paper is predicting the PM2.5 concentration at time step 𝑡 , denoted
as 𝑐𝑡 ∈ R𝑁 for 𝑁 measurement stations. The inputs for these predictions are the current PM2.5
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concentration 𝑐0 and weather information for the prediction time step 𝑥𝑡 ∈ R𝐾×𝑁 with 𝐾 being
the number of weather features, as described in detail in subsection 3.2. Predictions are made
for a short-term time horizon where 𝑡 ∈ [1, 𝜏], with 𝜏 ∈ {6, 12, 24, 48, 72} for the purposes of our
experiments.

3.2 Data
The geographical region on which we evaluate our approach is Beijing and the Hebei province in
China, as they are highly polluted areas, in which also previous work has been done to serve as a
means of comparison. We used two different types of data with different sources for this project.
The first is the PM2.5 data used as historical values in the model inputs and as ground truth for

the prediction targets. The data we used1 comes from a network of highly accurate sensors by the
Chinese government that is, however, rather sparsely deployed. It provides air quality information
for various attributes such as PM2.5, PM10, SO2, NO2, O3 and CO. We restrict ourselves to the
prediction of PM2.5 for the purposes of this project.

The second type of data we used is weather information from ECMWF2, which serves as input
to our model. We consider the following features:

• Temperature influences PM2.5 through chemical effects and ventilation of cold fronts [21].
• Planetary Boundary Layer (PBL) height3 relates to the vertical diffusion of PM2.5 and is
inversely correlated with its concentration [12, 20].

• Humidity promotes the formation of ammonium nitrate which is a component of PM2.5
[21].

• Air pressure has a significant positive correlation with PM2.5 [10].
• Precipitation reduces the PM2.5 concentration due to drag effects [16, 18].
• Wind transfers PM2.5 across distances of up to 250km [7].

The data is provided as a grid, and we retrieve the values closest to the PM2.5 sensors of the first
data set. Thereby we then achieve a network of measurement stations with both PM2.5 as well as
weather values.

3.3 Model
The model we are proposing is based on [23] and improves it in several ways. It operates on a
graph 𝐺 = (𝑉 , 𝐸) where 𝑉 are the nodes (measurement stations) with |𝑉 | = 𝑁 and 𝐸 is the set of
edges between them. Inputs to our model are grouped into two categories:

• Node attributes 𝑥𝑡 ∈ R𝐾×𝑁 : These 𝐾 attributes are assumed to locally influence the PM2.5
concentration at a measurement station. They include temperature, PBL, humidity, air pres-
sure and precipitation.

• Edge attributes𝑦𝑡 ∈ R𝐿×|𝐸 | : In contrast to the node attributes, these 𝐿 attributes are assumed
to influence the transfers between different measurement stations. Following [23], they
incorporate domain knowledge and are derived from the wind speeds and directions at the
different nodes and static information, i.e. the distance between cities and the altitude of
the mountains between them. In particular, we compute the directional wind alignment and
relative speed to make it easier for the network to learn spatial relations.

In the course of the project, we have tried multiple architectures for the model, but the final one
is described in Algorithm 1. It receives as input the observed PM2.5 concentration right before the
prediction starts (𝑡 = 0) and the node and edge attributes for the prediction window (𝑡 ∈ [1, ..., 𝜏]).
1https://quotsoft.net/air/
2https://www.ecmwf.int/en/forecasts/datasets
3https://www.britannica.com/science/planetary-boundary-layer

https://quotsoft.net/air/
https://www.ecmwf.int/en/forecasts/datasets
https://www.britannica.com/science/planetary-boundary-layer
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Algorithm 1: Prediction performed by our model
Input :observed PM2.5 concentration 𝑐0

node attributes [𝑥1, ... 𝑥𝜏 ]
edge attributes [𝑦1, ... 𝑦𝜏 ]

Output :predicted PM2.5 concentrations [𝑐1, ... 𝑐𝜏 ]
transfer matrices [𝑅1, ... 𝑅𝜏 ]

1 𝑒ℎ = 0;
2 ℎℎ = 0;
3 Output_R = [] ;
4 Output_c = [] ;
5 for 𝑡 ∈ [1, ..., 𝜏] do
6 if 𝑡 = 1 then
7 𝑐𝑡−1 = 𝑐0;
8 end

/* (1) compute local phenomena */

9 ℎℎ = NodeGRU(ℎℎ , [𝑥𝑡 , 𝑐𝑡−1]) ;
10 ℎ𝑡 = NodeMLP(ℎℎ) ;

/* (2) compute transfers */

11 𝑒ℎ = EdgeGRU(𝑒ℎ , generateEdgeAttributes(𝑥𝑡 , 𝑦𝑡 ));
12 𝑅𝑡 = restructure(EdgeMLP(𝑒ℎ)) ;
13 Output_R.append(𝑅𝑡 ) ;

/* (3) execute transfers */

14 𝑐𝑡 = 𝑅𝑡ℎ𝑡 ;
15 Output_c.append(𝑐𝑡 ) ;
16 end

The output of the model are the predictions of the PM2.5 concentrations 𝑐𝑡 and a list of matrices
𝑅𝑡 that contain the transfer influences, as explained in more detail in 3.3.1. After initialising the
hidden states of the network’s recurrent units and the output lists, the model iterates over all time
steps 𝑡 ∈ [1, ..., 𝜏] of the prediction horizon and for each one goes through three stages:

(1) Compute local phenomena: A gated recurrent unit (GRU) NodeGRU gets as inputs the
previous hidden state ℎℎ , the weather information for the current time step 𝑥𝑡 and the
previous prediction of PM2.5 concentration 𝑐𝑡−1 and outputs an internal representation. At
this stage, the network models interactions of weather phenomena with PM2.5 individually
for all measurement stations. Using an multi-layer perceptron (MLP) NodeMLP, the higher-
dimensional hidden state ℎℎ is reduced to the shape R𝑁 , so there is a value for every station.

(2) Compute transfers: By applying a spatial attention mechanism, the model learns between
which stations and to which degree transfers of PM2.5 occur. To do so, edge attributes are
generated from the weather information of the stations and static domain knowledge. They
are then concatenated with the weather information of the source and target node for each
edge and fed through a recurrent unit EdgeGRU. Reducing the dimensionality of the hidden
state through EdgeMLP yields a contribution value 𝑟𝑖, 𝑗∀(𝑖, 𝑗) ∈ 𝐸 that can be interpreted as
the influence of station 𝑖 on station 𝑗 . In order to allow the network to learn more easily that
some stations might have no contribution at all, the final activation function of EdgeMLP is
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(a) The degree to which the PM2.5 concentrations 𝑐𝑖
with 𝑖 ∈ {1, 2, 3} affect the neighbouring stations is
determined by the factors 𝑟𝑖, 𝑗 . For example, the es-
timate for 𝑐𝑡+11 =

∑
𝑖∈{1,2,3} 𝑟𝑖,1 𝑓 (𝑐𝑖 ) where 𝑓 (·) is a

function using NodeGRU andNodeMLP as explained
in more detail in Algorithm 1.
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(b) The transfer matrix can also be used to perform
simulations. For example, by setting 𝑟3,1 = 𝑟3,2 = 0,
we can simulate how the PM2.5 concentration at
stations 1 and 2 would be affected, if emissions at
station 3 were turned off completely.

Fig. 2. A schematic illustration of the transfer model operating on a graph with three nodes

a ReLU that encourages sparsity. For further processing, these edge-wise contributions are
restructured to a transfer matrix 𝑅𝑡 ∈ R𝑁×𝑁 that is explained in more detail in 3.3.1

(3) Execute transfers: Finally, the transfers are executed by performing a matrix-multiplication
of transfer matrix 𝑅𝑡 with the local contributions ℎ𝑡 . This yields the final prediction vector 𝑐𝑡 .

3.3.1 Transfer matrix 𝑅 and Pollution Reduction Impact Analysis. In order to make the predictions
of our model more interpretable, our model produces as a by-product for every time step 𝑡 a transfer
matrix 𝑅𝑡 as shown in equation 1. Note that for brevity purposes, the index 𝑡 is omitted.

𝑅 =

©«
𝑟1,1 𝑟2,1 · · · 𝑟𝑁,1
𝑟1,2 𝑟2,2 · · · 𝑟𝑁,2
...

...
. . .

...

𝑟1,𝑁 𝑟2,𝑁 · · · 𝑟𝑁,𝑁

ª®®®®¬
(1)

The entries in this matrix can be used to interpret the influences of certain stations on others as
depicted in Figure 2a. The explainability of the model depends on the sparsity of 𝑅. If there are
small contributions of surrounding cities for every point in time for every target city, the results are
difficult to understand and hardly reflect reality. Hence, we use a ReLU activation function in the
end of the EdgeMLP to promote zero activations for the 𝑟𝑖, 𝑗 . However, this might lead to the situation
that all entries in a row vector of 𝑅 become zero, and the model cannot predict properly anymore.
Therefore, in the final version, we set the diagonal constantly to one, i.e. 𝑟𝑖, 𝑗 = 1 where 𝑖 = 𝑗 . This
makes sense from a domain knowledge point of view, as the local conditions at a measurement
station always affect the air pollution concentration.

Additionally to making the model more interpretable, the transfer matrix 𝑅 can be used to make
simulations for hypothetical situations by altering the influences 𝑟𝑖, 𝑗 . For example, by setting 𝑟𝑖, 𝑗 = 0
for all 𝑖 ∈ 𝑉 and one specific 𝑗 ∈ 𝑉 at simulation time, we can predict a world without the influence
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Fig. 3. This plot uses the transfer matrix𝑅 to explain how themodel makes its predictions for themeasurement
station Qianmen. It shows how the column vector determines by what the station is influenced. We see that
influences change over time.

of station 𝑗 , such as illustrated in Figure 2b. This might be useful to examine, for instance, how
shutting down a factory would reduce the PM2.5 concentration in surrounding cities. Naturally, the
influences cannot only be set to zero but can also be multiplied with a certain factor in order to
simulate the effects of any percentage reduction.

4 EXPERIMENTS
We ran all experiments on an NVIDIA Tesla K80 and split our data into a train (01/01/2018 –
30/09/2020), validation (01/10/2020 – 30/11/2020) and test set (01/12/2020 – 31/12/2020). All models
were trained with RMSprop and an initial learning rate of 0.0005. Experimental results have shown
that using a step-wise decaying learning rate that is halved every three epochs works best for our
model. The data is provided in batches of size 32 and trained for 30 epochs with early stopping after
five epochs. We run all experiments five times and report the average results. In order to improve
generalisation performance, we used a weight decay of 0.0005. We used Weights & Biases [2] for
tracking our experiments and for visualising the results.

An example of a prediction produced by ourmodel is depicted in Figure 4. The overall performance
on the test set is reported in Table 1. The longer the prediction horizon 𝜏 , the harder it is for the
model to make accurate predictions, as can also be seen in Figure 5.

5 DISCUSSION
In this project, we introduced a deep learning model that can be used for predicting, analysing
and simulating air pollution. Its prediction results are comparable to the state-of-the-art, while
the model lends itself well to being explained out-of-the-box. Its structure allows simulations of
how reducing emissions at certain stations would affect air pollution in the area. However, this
project only lays the foundation for a more advanced model. The simple matrix multiplication for
the transfers prevents learning more complicated relationships such as transfer lags. Introducing
temporal attention might alleviate this issue. Further, the 𝑅 matrix is sometimes unstable between
different training runs, showing that it is hard for the model to learn the transfer events exactly.
Improving these factors could allow our approach to make a relevant difference in the current
landscape of air pollution prediction approaches.
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Fig. 4. This is an example prediction produced by our model at the station Daxing over the test time frame of
December 2020. Overall, we see that the model can often capture the development very well, while some very
sudden drops or jumps are difficult to predict.

6 12 24 48 72

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
2

SGNN
PM25_GNN
MLP
GRU

Fig. 5. The longer the prediction length 𝜏 , the harder it becomes for the models to accurately predict PM2.5
concentration. This plot depicts our performance measured in 𝑅2 to similar models and shows that it is
comparable for most prediction lengths. The statistics have been computed over five individual training runs
of all models.
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𝜏 MLP GRU PM2.5 GNN SGNN
RMSE 12.8973 13.0061 12.7615 13.2216

6 MAE 10.4380 10.5661 10.4134 10.7102
𝑅2 0.7601 0.7551 0.7697 0.7537
RMSE 21.0701 16.6199 16.5403 17.1106

12 MAE 17.8770 13.6565 13.6779 14.0696
𝑅2 0.4694 0.6451 0.6464 0.6300
RMSE 26.2651 20.0557 19.9956 19.6719

24 MAE 22.1770 16.3468 16.4179 15.8836
𝑅2 0.2505 0.5293 0.5489 0.5410
RMSE 28.6216 21.9863 21.5540 21.9290

48 MAE 23.3884 17.4836 17.2278 17.4317
𝑅2 0.1090 0.4463 0.4732 0.4533
RMSE 28.4714 23.3448 22.7929 22.9120

72 MAE 22.9170 18.2332 17.7749 17.7527
𝑅2 0.1246 0.3749 0.4248 0.3947

Table 1. Performance comparison between our model (SGNN) and MLP, GRU and PM2.5 GNN from [23]
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