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Abstract

As the spread of false information has become ever more problem-
atic in recent years, research on automatic fact-checking methods
has intensi�ed. Typically, such approaches rely on an explicit
knowledge base to verify claims. They use a pipeline that �rst
retrieves relevant documents, then passages therein and, �nally,
performs entailment, i.e., predicts whether the evidence supports
the claim or not. The current state of the art mostly uses a vari-
ation of a standard Transformer with full self-attention for the
entailment. However, its quadratic memory complexity limits
the amount of evidence the model can process. In this thesis, we
study the use of various di�erent, more e�cient Transformers
as entailment models, allowing them to process more evidence.
We compare these techniques and balance the advantages and
disadvantages. The e�ciency improvements allow us to com-
pletely remove the passage retrieval step, resulting in signi�cant
savings in computational cost for the complete pipeline while
achieving 97-99% of the current state-of-the-art performance on
the benchmark data set FEVER. Further, our experimental results
show that the e�cient Transformer Longformer outperforms a
RoBERTa baseline for long evidence documents, as it can process
more input within the same memory budget. Overall, we �nd
using more evidence bene�cial for predictive performance. Us-
ing e�cient Transformers can reduce the computational costs of
fact-checking pipelines and allow them to handle longer evidence
documents.
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1. Introduction

False information, commonly referred to as fake news, is becoming an ever
more serious issue. In a 2018 Eurobarometer, 37% of respondents claim to come
across fake news every day or almost every day [22]. A large majority considers
it a problem for their country and democracy in general. The World Economic
Forum highlights online misinformation as a major potential source of danger
and disruption [23]. At the same time, �nancial analysts estimate fake news in
2019 alone to have caused $39 billion in stock market losses [55]. Tragically,
the phenomenon also soared during the Covid-19 pandemic in the form of
myths and rumours. In one dire example, more than 5,800 people have been
hospitalised, and 800 have died following a rumour, according to which drinking
methanol protects from the coronavirus [34]. Causing economic, social and
health fallout, misinformation online is a danger to humankind that cannot be
ignored.

Automated fact-checking based on machine learning might be a promising
solution to counter it. One way to distinguish the true from the false is to
compare claims made online to databases of proven and, per de�nition, trusted
evidence. An illustration of the task is depicted in Figure 1.1. These systems have
come a long way: starting as traditional database-driven reference methods, they
have evolved to make use of recent advances in Natural Language Processing
(NLP). Most modern fact-checking models build on attention-based Transformer
models [87], such as BERT [20] and its derivations, to determine whether a
claim is supported or refuted by a given piece of evidence. This task is known as
entailment, veracity prediction or claim veri�cation. Typically, it is implemented
by feeding a joint sequence of the claim and proven evidence into the models.
However, the complexity of traditional Transformers is quadratic in the length
of the input, signi�cantly limiting the amount of potentially relevant evidence
that a model can compare to a claim.

Hence, pipeline architectures, which split the task into three phases, are com-
monly used: First, the relevant documents (e.g. Wikipedia articles) are retrieved
using IR methods, such as BM25 [71]. Then, the relevant passages within the
documents are selected with another model. Finally, only the entailment is per-
formed using a Transformer. The downside of this approach is that the model
cannot recover if relevant evidence has not been successfully retrieved.

1



1. Introduction

Claim Relevant Evidence Evidence Base

Michael McCafferty was 
the President of EDP and, 
in its first six months of 
business, the company 
saw a half million dollar 
profit.

Michael McCafferty

[...] McCafferty was [EDP]'s 
President, [...]. In the first six months 
of the company's operation, the 
company saw $400,000 in losses, 
which was due in part to the fact 
that [...]

Verdict

French Revolution

Isopsestis cuprina

South Asia

...

Refutes

Isopsestis cuprina, which 
is found in the South 
Asian regions of Tibet, 
India, and Nepal, was 
described by Moore in 
1881.

Isopsestis cuprina

[...] It was described by Frederic 
Moore in 1881. It is found in Tibet, 
India and Nepal. [...]

Supports
South Asia

[...] The region consists of the 
countries of [...], India, Maldives, 
Nepal, Pakistan, and Sri Lanka. [...]

Michael McCafferty

Bumblebee

Input Retrieved from Evidence Base Output e.g. Wikipedia

Figure 1.1.: A fact-checking system typically relies on a large evidence base of trusted knowledge.
When a claim is put into it, the system predicts whether its evidence supports or
refutes it. The classi�cation label is often called a veracity verdict. This illustration
depicts two claims of the FEVEROUS data set [2]. One is supported, and the other
is refuted. The evidence base for this data set is the entirety of articles on English
Wikipedia. Most fact-checking systems use an explicit retrieval step, where, �rst,
given the claim, the relevant evidence is retrieved from the evidence base. Only
then the entailment, i.e., the prediction of the veracity label, is performed based on
the retrieved evidence.
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1. Introduction

In this thesis, we integrate the retrieval more with the entailment Transformer
by feeding it complete documents, skipping the passage retrieval step. Our
hypothesis is that the more potential evidence the entailment Transformer has
at its disposal, the better the whole model will perform. However, this requires
it to be capable of dealing with the increased input volume. The quadratic
complexity of current Transformers renders this computationally infeasible.
Fortunately, recent e�orts [8, 45, 36, 99] have focused on overcoming this
limitation and have achieved promising results in a wide variety of NLP tasks.
Following Tay et al. [82], we will call such models e�cient Transformers. We
examine how they can be applied to fact-checking and analyse advantages and
disadvantages in terms of scalability and predictive performance.

We set out to answer the following research questions:

• Does the fact that e�cient Transformers can handle longer input se-
quences within a feasible computational budget bene�t entailment per-
formance?

• How do the models perform in terms of computational performance
compared to traditional approaches?

• How do the di�erent techniques by which e�cient Transformers achieve
sub-quadratic complexity a�ect entailment results? Which models work
best for the task?

• To which degree can model predictions remain interpretable? For example,
how can models, which are fed complete documents, explain how they
reached their verdict, i.e., exhibit at which parts of the input they looked?

In the course of this work, we select appropriate data sets to answer these ques-
tions and implement a complete fact-checking pipeline with interchangeable
pre-processing, retrieval and entailment components. We set up and evaluate
various retrieval methods and create synthetic data splits to examine the be-
ne�ts and drawbacks of di�erent models. Finally, after establishing entailment
baselines, we train a variety of e�cient Transformers and analyse them with
respect to computational and predictive performance.

In short, our contributions are as follows:

1. We con�rm that entailment models bene�t from using explicit evidence
additionally to the implicit knowledge that they gained through pre-
training. This �nding motivates our study of the e�ects of using more
explicit evidence.

2. We show that using entailment models that can handle longer sequences
improves performance in a setting where complete, long documents are
used as input.

3. We �nd that feeding complete documents into e�cient entailment models
and thereby removing the passage retrieval step achieves comparable

3



1. Introduction

performance on FEVER [83] while simplifying the complete pipeline and
reducing the computational cost.

This thesis is structured as follows. After this introduction, we present related
work in Chapter 2 and formalise the problem in Chapter 3. Then, in Chapter 4,
we explain our method for retrieval and entailment. Chapter 5 reports our eval-
uation results on the di�erent data sets, discusses them and shows possibilities
for future work. Finally, we conclude our �ndings in Chapter 6.

4



2. Related Work

In this chapter, we introduce work related to this thesis project. First, we provide
an overview of background knowledge that should be helpful to readers unfa-
miliar with the �elds of NLP and fact-checking. Then, we summarise data sets
and current state-of-the-art methods as well as e�cient Transformer models.

2.1. Background

This section introduces the concepts relevant to this thesis project. It gives an
overview of fact-checking in general, details traditional information retrieval
approaches and explains the deep learning methods we use.

2.1.1. Fact-Checking

The task of fact-checking is often associated with the domain of journalism.
There exist numerous websites where humans manually fact-check claims of
various sources and support their results using trusted evidence1. They form
an indispensable resource for society to distinguish between true and false
information.

In this project, we are concerned with partly automating this process using ma-
chine learning. For a computer to be able to fact-check a claim, it currently needs
to refer to some knowledge base2. No model can be expected to unconditionally
predict if a statement is correct or incorrect. It can only determine whether its
evidence base supports it or not. Hence, most approaches in this �eld make
the important restriction that a claim is supported or refuted according to the
evidence at hand.

1https://research.ewu.edu/journalism/factcheck, accessed 2022-01-05
2Readers familiar with this issue might lament that most fact-checking models possess

not only explicit knowledge in the form of a knowledge base but also implicit knowledge,
which they have gained through pre-training. In fact, there exist approaches without an explicit
knowledge base that reach reasonable performance on similar, knowledge-intensive tasks [70].
When we say that models cannot make predictions without a knowledge base, we thereby
mean all the knowledge they have ever been presented with, including the implicit knowledge
in their parameters.

5
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2. Related Work

Evidence 
Base

Retrieval

Claim

Relevant 
Evidence Entailment Verdict

Figure 2.1.: High-level overview of a fact-checking pipeline

Conceptually, the problem can be grouped into two sub-problems: (1) retrieving
the relevant evidence from the knowledge base that discusses the claim and (2)
determining whether the retrieved evidence supports or refutes the claim. Taken
together, the �rst step, which we call retrieval, and the second step, which we
call entailment, form a so-called fact-checking pipeline. A high-level overview of
it is depicted in Figure 2.1. The nature of the problem brings about the challenge
of cascading errors: If the evidence necessary to support or refute the claim
has not been successfully retrieved, it takes away the foundation on which
the entailment model could make a decision. Then it must rely on its implicit
knowledge or resort to random guessing.

To tackle the fact-checking task, current research employs both traditional
Machine Learning (ML) approaches, such as classical IR methods, as well as more
novel deep learning models. While the latter typically outperform the former,
they are usually more costly to train and operate in practice. We elaborate on
the approaches with which we experiment in the following subsections.

Unfortunately, the literature in the �eld often uses di�erent terms for the same
or very similar concepts. We aim to stick with a consistent terminology but give
an overview of synonyms and related terms in the Glossary (Appendix C).

2.1.2. Information Retrieval (IR) Methods

For the retrieval component of our pipeline, we partly rely on traditional IR
methods. Their task is to �nd relevant evidence discussing the claim at hand. In
particular, we use the techniques TF.IDF [53] and BM25 [71] which are explained
in the following sub-sections.

6



2. Related Work

TF.IDF

Term Frequency times Inverse Document Frequency or TF.IDF, for short, is a
statistic that estimates the importance of a term to a document [53, 73]. It can
be intuitively understood as a relative measure of how often a term occurs in a
document, scaled down by its overall commonness.

A formal de�nition in the notation of Rajaraman and Ullman [67] is the follow-
ing: For a term i and a document j, it is de�ned as TF.IDFij = TFij · IDFij ,
where TFij denotes the term frequency and IDFij the inverse document fre-
quency. Given a collection of N documents, where we call fij the frequency, i.e.,
number of occurences of term i in document j, we de�ne the term frequency
TFij = fij/maxk fkj representing the frequency of the term normalised by the
maximum number of occurences of any term. Supposing term i appears in ni

of all N documents, IDFi = log2(N/ni). This measure is included to re�ect
that terms do not necessarily characterise a document better, just because they
appear more frequently.

In the application of document retrieval, documents with a high total TF.IDF
for all terms in a given query are likely relevant and should be retrieved. While
multiple variations of TF.IDF exist, it has no learnable parameters or hyper-
parameters and is very fast to run both at indexing and retrieval time.

BM25

Another widespread ranking function used in document retrieval is BM253 [71].
It can be considered an extension of TF.IDF that, additionally to term frequency
and document frequency, also accounts for document length and term frequency
saturation. As it is designed to operate on complete queries, we provide the
following common de�nition: Given a document D and a query Q, the BM25
score is de�ned as

score(D,Q) =
n∑

i=1

IDF (qi) ·
f (qi, D) · (k1 + 1)

f (qi, D) + k1 ·
(

1− b+ b · |D|
avgdl

) (2.1)

where f(qi, D) is the term frequency of qi, |D| is the length of the documents in
words and avgdl is the mean document length. k1 and b are hyper-parameters
that can be adjusted per application.4

3https://kmwllc.com/index.php/2020/03/20/understanding-tf-idf-and-bm-25/, accessed
2021-12-21

4https://en.wikipedia.org/wiki/Okapi_BM25, accessed 2021-12-21

7
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2. Related Work

The di�erences to TF.IDF make BM25 barely more expensive to compute while
exhibiting a few more desirable properties. We, therefore, use it in all of our
non-deep (sparse) experiments.

Limitations

TF.IDF and BM25 rely on the exact matching of terms between claims and
documents. This works well in the case of named entities, but it cannot handle
situations where semantic understanding is required, such as with synonyms.
For example, for the claim “Prince Philip died in 2021.”, these methods will
relatively easily be able to retrieve the Wikipedia article Prince Philip, Duke
of Edinburgh. However, given “In California, it’s prohibited to drink alcohol in
parks.”, they might struggle to retrieve the article Public intoxication, as for
doing so, they would need to know about the connection between alcohol and
intoxication as well as the fact that in parks refers to the public. In order to
address these shortcomings, retrieval methods based on deep learning have
been developed, which we will introduce in Section 2.2.2.

2.1.3. Deep Learning Models

Machine learning models based on deep learning have achieved remarkable
results in recent years as adoption and research has dramatically increased
[74]. They have outperformed more traditional approaches across various do-
mains, especially in those that require handling large amounts of unstructured
information, such as computer vision [74].

As for verifying claims, models have to be able to understand human language,
the sub-�eld relevant for this project is Natural Language Processing (NLP).
Also there, many tasks are solved using deep neural networks. One of the
most important model architectures to this day is the Transformer building
upon the concept of attention, initially introduced in 2017 [87]. While in most
recent history, di�erent models [24] were developed that achieve comparable
performance, the overwhelming majority of NLP models to date builds on a
variation of a Transformer, as do the ones we use in this project.

In the following, we �rst brie�y introduce the basics of deep learning. Then,
we explain the Transformer architecture and its most important building block,
attention.

8
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Basics

This sub-section contains a brief and simpli�ed introduction of some basic
concepts in deep learning. Training a neural network is an intricate process with
many caveats. This short introduction merely aims to convey the conceptual
idea. For a much more complete explanation, please refer to Goodfellow et al.
[25], on which the following paragraphs are based.

The term deep learning is typically used in connection with arti�cial neural
networks. They consist of multiple so-called layers of neurons which sequentially
process information5. Generally, the output of the previous layer is the input to
the next layer. The input to the �rst layer is a numeric representation of the
model inputs, and the outputs of the �nal layer are the �nal predictions. One of
the most common basic layers is a linear layer, which performs a matrix multi-
plication of its inputs with its weight matrix. Weights are trainable parameters
that are learned during the training phase. Layers are typically followed by
non-linear activation functions, such as Sigmoid, Tanh or ReLU [25].

There exist multiple settings in which neural networks can be trained. Two of
the most common ones are supervised and unsupervised learning. In the case of
supervised learning, a labelled data set exists, which consists of pairs of inputs
and corresponding labels or targets. For example, in fact-checking, the inputs
might be claims, and the labels might be whether or not the claims are correct.
In an unsupervised setting, there are no labels. One example would be language
modelling, where networks are tasked to generate text. For the purposes of this
explanation, we will focus on a supervised setting.

Given the labels and the model predictions, a loss is computed. The loss is high
for bad predictions and low for good predictions. The function that computes
it is chosen depending on the task. For regression, a common loss function
is Mean Squared Error, while for classi�cation, Cross-Entropy Loss has more
desirable properties. Hence, training a neural network roughly means solving
the optimisation problem of �nding model parameters that result in minimal loss.
Today, most neural networks are trained using backpropagation and gradient
descent. In short, the idea is that the errors are backpropagated from the loss
through the network. Then, the gradients of the parameters with respect to the
loss are computed. Finally, an optimiser (such as Adam [41]) performs a gradient
step that slightly adjusts the network’s parameters. The degree to which the
parameters are changed is called learning rate. This process is repeated multiple
times with the whole training data set.

5Networks with only sequential processing are called feed-forward neural networks or
Multi-Layer Perceptrons (MLPs). If they contain recurrent components, they are called Recurrent
Neural Networks (RNNs). A prominent example for RNNs are Long Short-Term Memory (LSTM)
models [31].

9



2. Related Work

It is weird that, in German, conjugated verbs are placed at the end of the sentence.

Es ist komisch, dass auf Deutsch konjugierte Verben an das Ende des Satzes gestellt werden.

Figure 2.2.: Example translation from English to German where tokens are far away from each
other.

In NLP, before the text can be fed into a neural network, it needs to be trans-
formed into a numerical representation with which the network can perform
computations. This process is done by a tokeniser that splits the input text
into multiple tokens. Various tokenisers have been introduced in the past, such
as Byte Pair Encoding (BPE) [77], WordPiece [75] and SentencePiece [44]. For
various tasks, special tokens are used, for example, a separator token (SEP) to
divide separate parts of the input. Tokens are assigned numbers which are then,
in the neural network, projected into a high-dimensional vector space using
embeddings. Finally, these embeddings are processed by the rest of the model.

A�ention

The concept of attention was introduced by Bahdanau et al. [6] to address
a problem that occurs when using RNNs for sequence-to-sequence (seq2seq)
tasks6, for example, translating a sentence into another language. As Bahdanau
et al. [6] observe, the way these networks are structured makes it hard for
them to �nd the link between tokens far away from each other. For example,
it would be hard to learn if a word that occurs early in the source sentence
should be placed at the end of the target sentence as illustrated in Figure 2.2.
The attention mechanism solves this problem by giving networks a way to pay
attention to di�erent tokens, no matter where they are located in the sequence.
Conceptually this is comparable to what humans do when solving problems:
Not giving equal importance to all context but focusing (or paying attention) to
the relevant parts.

Consider the example of translation, where we aim to translate a source sentence
x = [x1, x2, ..., xn] of n tokens into a target sentence y = [y1, y2, ..., ym] of m
tokens7. The attention mechanism can be used to create a context representation
ct for token t ∈ [1,m] that attends to all source token representations hi with
i ∈ [1, n]. The degree of the in�uence every source token has on the resulting
context is de�ned by the attention weightsαt,i, i.e., ct =

∑n
i=1 αt,ihi. Thereby, ct

is now a representation that contains in�uences from relevant source tokens.

6see https://paperswithcode.com/method/seq2seq, accessed 2021-12-22
7Example and notation from https://lilianweng.github.io/lil-log/2018/06/24/attention-

attention.html, accessed 2021-12-21

10

https://paperswithcode.com/method/seq2seq
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html


2. Related Work

Figure 2.3.: Figure from [6] visualising the attention weights in a translation task between
English and French. While for most words, the positions match, we see that the
word order of “European Economic Area” is inverted compared to “zone économique
européenne”.

Figure 2.3 visualises the attention weights αt,i. A crucial aspect here is how
they are computed. Various approaches have been proposed8, a very common
one being Scaled Dot-Product attention where

αt,i = softmax
(
sTt hi√
n

)
(2.2)

with st being a hidden representation of the already generated token and

softmax(xi) =
exp(xi)∑n
j=1 exp(xj)

. (2.3)

As, in practice, the calculation is performed simultaneously for a batch of
samples, a common notation introduced by Vaswani et al. [87] is as follows:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2.4)

where Q is a matrix of queries, K a matrix of keys, V a matrix of values and dk
the dimensionality of Q and K . For our introductory example from Bahdanau

8for an overview, see https://lilianweng.github.io/lil-log/2018/06/24/attention-
attention.html#summary, accessed 2021-12-22
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et al. [6], dk = n, Q = [s1, s2, ..., sb]T and K = V = [h1,h2, ...,hb]T where we
call b the batch size.

This formulation also gives rise to replacing Q, K and V with other values. Our
example, where Q 6= K = V , is often called cross-attention. Another useful
version where Q = K = V is called self-attention. It is a common building
block for many of today’s architectures [87, 100]. Generally, multiple attention
heads are used, which are simply attention weight transformations that are
independent of each other. They allow these so-called multi-head attention
modules to learn di�erent representation subspaces [87].

An important observation in the context of this project is that in the case of
self-attention, the matrix multiplication QKT will result in a large matrix of
size N ×N where we call N the length of the input sequence. Therefore, the
canonical form of self-attention has a computational memory complexity of
O(N2), severely limiting the length of input sequences that can be processed.
Recently, Rabe and Staats [63] introduced a simple algorithm of memory com-
plexityO(1) that, however, still has a time complexity ofO(N2). In this project,
we will analyse mechanisms that aim to tackle this computational challenge.

Transformers

The Transformer is a model architecture introduced by Vaswani et al. [87]. It
was the �rst approach that relied only on attention mechanisms for seq2seq
tasks, entirely without recurrent or convolutional components. While many
variations and improvements have been proposed9, the core idea remains the
same and powers most modern NLP models.

Figure 2.4 depicts the high-level architecture. Like many seq2seq models, the
Transformer has an encoder-decoder structure. Given an input sequence x =
[x1, ..., xn], the encoder generates a representation z = [z1, ..., zn] from which
the decoder then computes the output sequence y = [y1, ..., yn]10. Addition-
ally to the encoder outputs, the decoder consumes the previously generated
tokens.

The encoder consists of N identical layers, each consisting of a multi-head self-
attention module, a feed-forward neural network, layer normalisations [5] and
residual connections [28]. Similarly, the decoder consists of N layers that are
mostly the same as the encoder ones. However, it contains another multi-head-
attention module that performs cross-attention between the representations

9for an overview, see https://huggingface.co/docs/transformers/v4.14.1/en/model_summary,
accessed 2021-12-22

10notation taken from http://nlp.seas.harvard.edu/2018/04/03/attention.html, accessed 2021-
12-22
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Figure 2.4.: Architecture of the Transformer from Vaswani et al. [87]

generated by the encoder (z) and its intermediary representation from the �rst
self-attention sub-layer.

For text processing, the input sequences are tokenised and then embedded
using learnable embeddings. In contrast to convolutional or recurrent neural
networks, Transformers have no inductive bias for the principle of locality. In
other words: without additional facilities, a Transformer would treat sequences
like bags of words. Hence, the authors add positional encodings that give the
model information about the position of inputs tokens.

An essential concept commonly used with Transformers is pre-training. The
idea is that the model is pre-trained on a general task that teaches it about
language and the world. Only then, it is �ne-tuned to a downstream task such as
entailment. Pre-training brings about two advantages: First, pre-training data is
relatively cheap to obtain, as we will see in the following. Second, it prepares
Transformers for a setting called transfer learning, meaning that the pre-trained
weights can be re-used. This makes the training of large models considerably
cheaper, as they need not be re-trained from scratch for every new task or data
set. It is common that researchers publish their model weights so that others
can not only reproduce their results but also �ne-tune the models to di�erent
use cases without complete re-training.

A fundamental approach on which many of today’s models are based is BERT
[20]. Its authors �rst introduced two important pre-training tasks: Masked
Language Modelling (MLM) and Next Sentence Prediction (NSP). In MLM, a
large corpus of text is provided as input, and certain tokens (or words) are

13
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masked, i.e., hidden from the model. The model is then trained to predict the
masked tokens. For NSP, the model gets a sentence and two choices for the
sentence that follows, sentence A and B. A is the true sentence, and B is a random
sentence sampled from the data set. The model’s task is to determine whether
sentence A or B is the real sentence following the input. These approaches both
have the advantage that samples can be generated easily from arbitrary texts,
while data labelling for supervised settings can be expensive. While previously,
these pre-training tasks were called unsupervised [20], some argue that they
actually represent a form of self-supervised learning11.

2.2. State of the Art

In this section, we introduce current state-of-the-art research in the �eld of
fact-checking. We start by elaborating on commonly used evaluation data sets
and presenting current methods. Then, we describe the current �eld of research
in the area of e�cient Transformers, which we aim to apply to the task of
fact-checking.

2.2.1. Data Sets

Methods for fact-checking in previous work vary signi�cantly, depending on
which data set they were optimised for. Amongst the most common data sets is
the FEVER (Fact Extraction and VERi�cation) series [83, 84, 2] in which arti�cially
created claims are veri�ed against Wikipedia pages. The objective is for a model
to retrieve the relevant pages and passages therein and then assign the label
Supported, Refuted or Not Enough Info. Version 2.0 of the challenge [84] requires
a model to be more resistant to adversarial samples, whereas the 2021 version,
FEVEROUS [2], includes structured data in the form of Wikipedia tables and
lists. The original challenge forms part of the KILT benchmark [62]. While in
FEVER claims are arti�cially created, MultiFC [4] is a data set of real-world
claims that need to be checked against news outlets. PolitiHop [57] explicitly
introduces the additional challenge of requiring multi-hop checking, where only
a set of connected evidence pieces leads to the �nal verdict, unlike FEVER [83]
and MultiFC [4], which can mostly be answered with a single sentence. Another
fairly recently introduced data set is FaVIQ [59]. It consists of a large number of
claims that were generated from real questions and uses the Wikipedia dump
from KILT [62] as its evidence base. There are also smaller-scale and more
specialised data sets focusing on scienti�c facts (SciFACT [88]), climate change

11https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence, ac-
cessed 2022-02-08
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Name Domain Claims Evidence source Claim source
FEVER [83] general 185k Wikipedia (intro) arti�cial
FEVEROUS [2] general 87k Wikipedia (full) arti�cial
FaVIQ [59] general 188k Wikipedia (full) gen. from real questions
SciFact [88] science 1.4k Scient. abstracts arti�cial
Snopes Corpus [27] general 6k Snopes from Snopes
Climate-FEVER [21] climate 7k Wikipedia (full) real
CREAK [56] com. sense 13k Wikipedia (full) arti�cial
COVID-Fact [72] covid 4k r/COVID19 real, auto. annotated
PolitiHop [57] politics 0.5k Politifact real-world
MultiFC [4] politics 44k various news sites real-world

Table 2.1.: Overview of various fact-checking data sets

(Climate-FEVER [21]) and COVID (COVID-Fact [72]). CREAK [56] is intended
to provide a challenge for common sense reasoning while the Snopes Corpus
[27] uses the fact-checking website Snopes12 as its evidence base. We give an
overview of multiple relevant data sets including sizes and the evidence sources
in Table 2.1.

2.2.2. Fact-Checking Methods

The problem of fact-checking is typically divided into the two sub-problems
of (1) retrieving the relevant evidence and (2) determining whether it supports
or refutes the claim. Related work that tackles Question Answering (QA) tasks
[97] often calls the �rst component retriever and the second reader. In fact-
checking, the reader is often called the entailment component or verdict predictor.
Many approaches split the retrieval task in two: document retrieval and passage
retrieval, where a passage can but must not be a sentence. In this setting, the
document retriever retrieves the relevant documents, and the passage retriever
only selects the relevant passages therein [7]. This is done to reduce the amount
of information the entailment model must process. For fact-checking, both sub-
tasks have to be tackled. Therefore, we �rst explain state-of-the-art retrieval
methods and then move to entailment.

Retrieval Historically, retrieval was done using traditional approaches such
as TF.IDF and BM25. These methods are keyword-based and �nd overlaps
between terms in the query (claim) and the documents. A common approach
based on TF.IDF is DrQA [17] that is used for baselines both in FEVER [83]
and FaVIQ [59] due to its comparatively good performance and low computa-
tional requirements. More recently, these approaches have largely been outper-
formed by so-called dense methods, which is why the aforementioned, today,

12https://www.snopes.com, accessed 2022-03-08
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are also called sparse. Dense methods project documents and queries into a
shared embedding space generated by a Transformer model. The documents
closest to the claim in the embedding space are returned as retrieval results.
A common approach for �nding these neighbours is Maximum Inner Product
Search (MIPS) [54]. The advantage of dense approaches over sparse ones is
that the term overlap between query and document need not be exact but can
also be semantic, allowing better handling of synonyms. The �rst approach
to show this was Dense Passage Retrieval (DPR) [39], which outperformed
sparse methods. However, it is also much more computationally expensive at
indexing time as embeddings need to be pre-computed for all documents. While
in DPR, retrieval is trained independently of the downstream task, REALM [26]
includes it in an end-to-end fashion: The retrieval model which generates the
document embeddings is also �ne-tuned when training for, say, a fact-checking
task. This results in an even higher computational burden, limiting the scope
to which REALM can be applied. RAG [48] tackled this problem by only �ne-
tuning the query embedding model, leaving the document embedding model
untouched. FiD [35] uses the expectation-maximisation-algorithm as an approx-
imation. Two �nal noteworthy extensions to DPR are Multi-hop Dense Retrieval
(MDR) [97] and Reinforced Adaptive Retrieval Embedding (RARE) [12] which
yield better performance for tasks, where multiple pieces of evidence need to
be retrieved sequentially.

Entailment The task of entailment is a standard task in NLP. It is often called
Natural Language Inference (NLI). As it is a classi�cation task, results are typ-
ically reported in Label Accuracy (LA)13. Hence, it is not surprising that there
exist many benchmark data sets for it, such as SNLI [13] and MultiNLI [95].
They were integrated into the standard NLP benchmark GLUE [89], which
also contains QNLI, which is derived from the QA data set SQuAD [68] and
WNLI based on the Winograd schema challenge [46]. SuperGLUE [90], an ex-
tension of GLUE to make it more challenging, features another data set for
Recognising Textual Entailment (RTE). The leaderboards of these tasks14 are
dominated by large Transformer models, many of which are based on the BERT
architecture [20]: RoBERTa [49] (355M parameters), T5 [66] (11B parameters),
DeBERTa [29] (1.5B parameters), ERNIE [101] (10B parameters) and GPT-3 [14]
(175B parameters).

While the standard tasks of retrieval and entailment are building blocks for
fact-checking, there is a whole body of work evaluating di�erent approaches
jointly and speci�cally tackling the fact-checking problem. In their FEVER
survey paper, Bekoulis et al. [7] group methods into those that (a) follow the

13for details, see Section 5.2
14https://gluebenchmark.com/leaderboard and https://super.gluebenchmark.com/leaderboard,

accessed 2022-01-05
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Validation set Test set
Model LA FEVER LA FEVER
Baseline [83] 51.37 31.27 48.84 27.45
KGAT [50] 78.29 76.11 74.07 70.38
e-FEVER [78] 77.48 74.98 76.60 74.27
BART [47] - - 64.0* 86.74**
RAG [48] - - 72.5* 86.31**
MLA [43] 76.92 72.83 77.05 73.72

Table 2.2.: Results on the FEVER data set [83]. LA measures the entailment classi�cation ac-
curacy, while the FEVER score also takes into account retrieval performance. *from
Lewis et al. [48] **from Bekoulis et al. [7]

traditional pipeline approach and (b) joint models. The pipeline approach refers
to models where retrieval and entailment are strictly separated, whereas joint
models integrate them, like the aforementioned RAG [48]. According to Bekoulis
et al. [7], the best-performing pipeline model for FEVER is e-FEVER [78], which
extends the work of Stammbach and Neumann [79] by using GPT-3 [14] for
entailment. However, on the validation set, it is outperformed by the graph-
based approach KGAT [50]. Another strong contender is MLA [43] with its
custom attention module, which achieves top label accuracy on the FEVER
test set. All methods above are speci�cally tailored to and �ne-tuned for the
fact-checking task. When it comes to FEVER score, Bekoulis et al. [7] report
Lewis et al. [47] and Lewis et al. [48] when optimised for the KILT benchmark
[62] as the best joint models. We give an overview of all mentioned approaches
in Table 2.2.

2.2.3. E�icient Transformers

In the spirit of joint models, our approach aims to alter the traditional pipeline
by integrating the passage retrieval and entailment steps using an e�cient
Transformer. Tay et al. [82] provide a survey of several such methods: While
early work used local attention mechanisms at the cost of expressivity (Image
Transformer [60]), some newer approaches apply more sophisticated non-dense
attention, where not all tokens attend to all others. ETC [1], Big Bird [99] and
Longformer [8] do so using �xed patterns, such as neighbours or random tokens,
while Reformer [42] learns them.

Another line of work focuses on recurrent processing by caching previous
layer activations to attend to them later. The �rst to introduce this concept
was Transformer-XL [19], followed by Compressive Transformers [64], which
use compression to be able to keep the caches for longer. Block-Recurrent
Transformers [33], on the other hand, extend the recurrence from a token to a
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(a) Full self-attention (b) Sliding window (c) Dilated sliding window (d) Global and sliding win-
dow

Figure 2.5.: Illustration of Longformer attention patterns from [8]

block level. The resulting architecture is similar to LSTMs [31], but where the
individual cells are Transformer layers.

Orthogonal research approximates or simpli�es the matrix multiplications
used in the QKV attention. Performer [18], Linear Transformer [40] and Lin-
former [91] use low rank or kernel approaches to approximate them, while
Fastformer [96] applies an entirely di�erent attention formulation.

The recently proposed Perceiver method [37] and its extension Perceiver IO [36]
keep the self-attention mechanism the same and use cross-attention to compress
large inputs to a smaller latent representation, on which they then operate.

In an entirely di�erent spirit, which is in line with MLP-Mixer [85] from vision,
FNet [45] completely does away with self-attention. It replaces it with Fourier
transformations, which shu�e tokens su�ciently so that the subsequent feed-
forward layers can access and learn dependencies between them.

This project aims to compare multiple of these e�cient Transformer methods
for fact-checking and analyse the advantages and disadvantages that come with
them. In the following, we describe some of the methods that are particularly
interesting for our application in detail.

Longformer

The taxonomy of Tay et al. [82] groups Longformer [8] in the family of methods
that use �xed patterns and employ a form of memory. Longformer reduces
the runtime complexity of traditional Transformers from O(n2) to O(n) using
a di�erent attention module that is a drop-in replacement for standard self-
attention. While in self-attention, every token can attend to every other token
(see Figure 2.5a), in Longformer, a token can only attend to another token in
the following cases:

1. Sliding window: Tokens can attend to their neighbours with a �xed
window size to account for the local context, as depicted in Figure 2.5b.
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2. Dilated sliding window: In order to increase the receptive �eld, this
case allows attention to neighbouring tokens in a dilated local window,
analogously to dilated Convolutional Neural Networks (CNNs) (see Fig-
ure 2.5c).

3. Global tokens: These tokens can attend to and be attended to by every
other token (see Figure 2.5d). Using a so-called global attention mask, this
can be con�gured separately for each sample.

The authors use di�erent con�gurations of these patterns for di�erent model
layers. Therefore, of course, the receptive �eld of non-global tokens is reduced,
which can prove detrimental to predictive performance. However, as it allows
for processing longer sequences, this disadvantage can be balanced out for
long documents. At the time of publication, Longformer achieved new state-
of-the-art results on the character-level language modelling tasks text8 and
enwik8 [52] and QA tasks such as HotpotQA [98]. However, at the time of this
writing, Big Bird [99] outperforms Longformer on the latter. For QA tasks, all
tokens that are part of the question are con�gured as global tokens. Thereby,
the question can attend to all parts of the potentially relevant evidence.

It is worth noting that, while the model does show linear memory complexity
in the input sequence length, its complexity is quadratic with respect to the
number of global tokens. Lee-Thorp et al. [45] argue that if a large number
of global tokens is required to achieve good performance, the model does not
e�ectively have linear complexity anymore.

Big Bird

Big Bird [99] is a model that is conceptually close to Longformer [8]. It also uses
local and global attention to limit the scope of tokens attending to each other,
reducing runtime complexity. Additionally, Big Bird uses random tokens to
which all tokens can attend. The paper contains theoretical proofs showing that
their attention mechanism is as powerful and expressive as full self-attention.

The authors of Big Bird themselves acknowledge similarities to Longformer and
point out two key di�erences: The way global-local attention is implemented
in Big Bird di�ers from Longformer in that it uses relative rather than abso-
lute position encodings. Also, they train the global tokens using Contrastive
Predictive Coding (CPC) [86] loss.

Big Bird comes in two con�gurations, Internal Transformer Construction (ITC)
and Extended Transformer Construction (ETC). For ITC, the global tokens are
�xed for all samples. For example, in their HotpotQA [98] experiments with ITC,
they set the �rst 128 tokens to global. ETC, on the other hand, behaves more
like Longformer global tokens: Additional tokens are made global to store more
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Figure 2.6.: Architecture of an FNet from [45]

context. For HotpotQA [98], they set one token per evidence paragraph, one
token per sentence and all question tokens to global. Big Bird ETC outperforms
Longformer on HotpotQA [98], TriviaQA [38] and WikiHop [93].

FNet

The abovementioned methods modify the self-attention component to reduce
memory complexity. In contrast, the idea of FNet [45] is to do away with it
completely. Every self-attention sub-layer in the Transformer architecture is
replaced by a 2D Fourier transformation – one along the sequence dimension
and one along the hidden dimension. The architecture is depicted in Figure 2.6
and looks very similar to the traditional Transformer in Figure 2.4.

The authors argue that Fourier transformations are suited as replacements for
self-attention because they e�ectively mix tokens. Thereby, they allow the feed-
forward layer to access all tokens and learn connections between them. Also, due
to the duality of the transformation, the repeated application in the subsequent
encoder blocks can be interpreted as alternating transformations between time
(sequence) and frequency (hidden) domain. Thus, the feed-forward layers can
alternatingly operate on and across tokens.

Fourier transformations are simple linear transformations without learnable
parameters, which, due to optimised implementations, are very fast to compute
on GPUs. Depending on the algorithm used, they can reduce the computational
complexity of the model to O(n log n). However, the authors claim that for
shorter sequences and when using TPUs, it is faster to use a di�erent algorithm
with O(n2). The paper reports 92-97% of BERT [20] accuracy on GLUE [89]
while training up to 80% faster. They also report much faster training and results
comparable to the state of the art on the Long Range Arena benchmark [81].
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Figure 2.7.: Architecture of Perceiver IO from [36]

Perceiver IO

Perceiver IO [36] is an extension of the previously introduced Perceiver [37].
Deepmind presented both models with a focus that di�ers from the other
e�cient Transformers we evaluate here. Rather than aiming to reduce the
complexity of the self-attention module, they present an architecture that should
be e�cient as a whole for multiple tasks. The authors evaluate it on vision, text
and multi-modal tasks.

Its core idea, as depicted in Figure 2.7, is to project a potentially large input
array into a signi�cantly smaller latent space using cross-attention (Encode).
The core Process phase is virtually equivalent to a standard Transformer self-
attention block and is repeated several times. Finally, an output query array is
used in the Decode phase to extract the output information from the latent space,
again using cross-attention. The output query array is the main innovation
that Perceiver IO adds to Perceiver. It allows the model to generalise to more
tasks and renders it linear in the output size. For entailment, it is just another
learnable parameter.

The reduction of computational costs comes from the fact that the repeated self-
attention is not applied to the whole input sequence but only to the signi�cantly
smaller latent space. Thus, while it still scales quadratically with respect to the
latent size, its complexity is linear in the input and output sizes.

The authors report results matching a BERT [20] baseline on GLUE [89] without
tokenisation. That is, the input characters are simply encoded as raw UTF-8
bytes.
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This chapter formalises the fact-checking task that we tackle. First, we introduce
the notation we will use in the rest of the thesis. Then, we present an exact
problem de�nition, runtime challenges that using Transformer models entails,
and, �nally, the research gap.

3.1. Task Formulation

In the following, we put forward a formal de�nition of the fact-checking task.
Let us call a claim that consists of m tokens c = [c1, . . . , cm] and a knowledge
base E = {e1, . . . , ek}. It consists of k evidence documents, which are in turn
sequences e = [e1, . . . , en] of varying lengths n. For a given c, the task is to
�nd a function fθ(c, E) that makes a prediction ŷ of the real class y ∈ C where
C = {SUP,REF,NEI}. That is, the problem is the classi�cation of whether a
claim is supported (SUP), refuted (REF) or if not enough information is available
to tell (NEI).

We call a sample a tuple of a claim and the corresponding label, i.e., xi = (ci, yi).
TheM samples in the training data setX = {(c1, y1), . . . , (cM , yM)} are drawn
independently from an unknown distribution pdata. The most prevalent objective
is to optimise accuracy, which is de�ned in Equation 3.1 using Iverson bracket
notation1.

acc(y, ŷ) =
1

M

M∑
i

1 [yi = ŷi] . (3.1)

However, as accuracy is not a good measure for imbalanced data sets, such are
often also evaluated on measures like F-scores2. While other measures exist,
they are mostly speci�c to certain evaluation data sets and less commonly
reported in the literature.

1[P ] =

{
1 if P is true
0 otherwise.

2https://en.wikipedia.org/wiki/F-score, accessed 2022-02-07
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3.2. Approach

For �nding ŷ = fθ(c, E), the model has two elements at its disposal to base its
predictions on: The �rst are its parameters θ, which we call implicit knowledge.
Models only based on them have shown impressive results, but they come with
the drawbacks that, on the one hand, they have to be re-trained every time the
knowledge base should be updated and, on the other hand, it is expensive to
train large models, rendering them costly to scale up [61].

Therefore, we consider a second source of knowledge, namely the explicit evid-
ence baseE. Let us assume we had an oracle model f ∗ that always correctly pre-
dicts the class like an infallible human would. It follows, that it makes the predic-
tion correctly given the full evidence base E, i.e., ∀(ci, yi) ∈ X, f ∗(ci, E) = yi.
Mostly, not all information inE is necessary to verify a given claim c, but only a
small subsetE ′c ⊂ E where generally |E ′c| � |E|. We callE ′c a gold evidence set
for claim c ⇐⇒ (f ∗ (c, E ′c) = y) ∧ (@e ∈ E ′c : f ∗(c, E ′c) = f ∗(c, E ′c \ {e})).
In simple terms, a gold evidence set contains su�cient evidence to verify
a claim, but not more. There might exist multiple such sets for any claim
E

′(1)
c , . . . , E

′(q)
c .

We refer to all evidence that is part of any gold evidence set, i.e., e ∈ Gc with
Gc =

⋃q
i=1E

′(i)
c , as gold evidence and all evidence that is not, i.e., e /∈ Gc,

as noise. Finding an approximation of E ′c is called the retrieval step gη of the
fact-checking pipeline, i.e., Ê ′c = gη(c, E). It is necessary, as current entailment
models cannot process all the evidence in the knowledge base. The retriever
is optimised to �nd parameters η∗ which predict a subset that contains all the
necessary evidence while also containing as little noise as possible, i.e.,

η∗ = arg min
η

|gη(c, E)|

s.t. E ′c ⊆ gη(c, E).
(3.2)

Practically, retrievers are implemented using a scoring function that assigns
a score of relevancy for every piece of evidence e ∈ E to a claim c. The ideal
version of this function is given in Equation 3.3.

score∗(e, c) = 1 [e ∈ E ′c] (3.3)

The retriever selects k pieces of evidence with the highest scores. Of course,
this approach might lead to a situation where relevant evidence is not correctly
retrieved and, hence, the model is left to make a decision based on its implicit
knowledge θ.

Finally, the task formulation becomes
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ŷ = fθ(c, Ê ′c)

= fθ(c, gη(c, E))
(3.4)

where we call gη the retrieval and fθ the entailment model.

3.3. Runtime Challenges

The models that we and related work use are Transformers, which receive a
sequence of text as input, typically constructed as

s = c ‖ SEP ‖
(
‖

e∈Ê′
c

e

)
(3.5)

where ‖ denotes the concatenation of two sequences and SEP a separator
token.

As these cannot handle arbitrarily long input sequences, they are truncated after
a certain sequence lengthO, so that s′ = (s1, . . . , smin(O,|s|)). Hereinafter we call
the �nal sequence length N = |s′|. Traditional Transformer models using self-
attention have a memory complexity ofO(N2) due to the multiplicationQKT in
Equation 2.4, as we explained in Section 2.1.3. Hence, using commonly available
current hardware, sequence lengths N > 512 tokens become prohibitively
expensive, limiting the amount of evidence a model can process [99].

3.4. Research Gap

Under this setting, using more e�cient Transformer models with sub-quadratic
computational complexity gives rise to the following potential advancements
of the state of the art in fact-checking:

1. Improving model performance: As e�cient Transformers allow for
processing longer sequence lengths N , more evidence could be provided
to the model, i.e. the size of Ê ′c could be increased. Even though for most
data sets, E ′c is relatively small, a prediction Ê ′c of it where E ′c ⊆ Ê ′c
might contain substantial noise leading to longer input sequences. Let
us consider a noisy retrieval model which retrieves a relevant piece of
evidence e at position p, and an entailment model can handle k pieces
of evidence. If p > k, it cannot consider the relevant evidence and has to
rely on its implicit knowledge θ, which might not contain the relevant
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information. Hence, increasing k should improve model performance in
such a setting.

2. Reducing computational cost: On the other hand, using more e�cient
models might allow for achieving the same model performance while
using fewer resources, i.e., having a lower memory footprint or incurring
lower computational costs (e.g. memory consumption or forward pass dur-
ation) [82]. This might be achieved either solely through a more e�cient
entailment model or because handling larger sequence lengths allows
for using less expensive retrieval approaches, such as sparse methods or
skipping the passage retrieval step.
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Having elaborated the research problem and the potential for improvement, we
will now lay out our approach to building an improved fact-checking pipeline.
Overall, we follow the typical retrieve-then-entail architecture. In this chapter,
we will detail the methodology and the framework under which we perform
our experiments. First, we describe the retrieval component in Section 4.1. We
experiment with sparse and dense approaches but will �nd it best to focus on
sparse retrieval with BM25 for the following experiments. Then, in Section 4.2,
we come to the entailment components, which form the focus of this work.
After establishing baselines, we will explore more e�cient Transformers, their
di�erences, and how we use them for fact-checking.

4.1. Retrieval

The �rst step of a traditional fact-checking pipeline, as illustrated in Figure 2.1,
is retrieving documents that are relevant for the claim. While most of our
experiments rely on it, there are also claim-only methods, which we brie�y
explore in Section 5.3.2.

This phase of the pipeline corresponds to a typical IR problem. We make use
of the classical approach BM25 and more novel deep learning methods in the
following subsections.

In terms of technical implementation, we �rst load all of our evidence base
for the respective data sets into an ElasticSearch1 index, which serves as our
database. We then use Haystack2 to retrieve the relevant documents. The way
this is done depends on the retrieval method used, as explained in the following
subsections. Finally, the IDs of the top k results for each claim are saved to a
JSONL3 �le for further processing. We always retrieve k = 100 document IDs,
but only signi�cantly fewer can be used by the entailment models, as we will
see.

1https://www.elastic.co/elasticsearch/, accessed 2022-02-09
2https://haystack.deepset.ai/, accessed 2022-02-09
3https://jsonlines.org, accessed 2022-02-18
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For the data sets FEVER [83] and FEVEROUS [2], the retrieval is supervised,
i.e., the gold evidence for each claim is known. Therefore, we can measure how
well the relevant evidence was retrieved. For these two data sets, the following
two measures are used to compare to other methods in the literature:

• Fully supported: This measure is the fraction of claims for which at least
one gold evidence set was fully retrieved, i.e., all documents in that set
were retrieved. NEI claims are ignored, as, by de�nition, the knowledge
base does not contain any evidence that supports or refutes them.

• Oracle accuracy: In contrast to fully supported, NEI claims are always
considered correctly retrieved for oracle accuracy.

For FaVIQ [59], no gold evidence is given. While the authors do provide a set
of reference documents, they retrieved them using TF.IDF. Hence, they cannot
be used for supervised training and merely act as a baseline to compare to.

We report the results of our retrieval methods in Section 5.3.1

4.1.1. Sparse Retrieval

For sparse retrieval, the only method we experiment with is BM25, as it is
commonly used as a baseline method and yields competitive results [7]. When
loading the documents into the ElasticSearch document store, a search index is
built based on the estimated importance of the search term. In our experiments,
we �nd it helpful to prepend the document’s title to the pure text (i.e., the
Wikipedia article content). The improvements in retrieval scores are likely due
to the fact that, for Wikipedia, the title often describes well what the article
is about. As BM25 is based on term frequency, adding the title emphasises its
importance and aids the linking to direct matches. We retrieve the evidence
using Haystack’s ElasticsearchRetriever4 without any adjustments to vanilla
BM25 in terms of function and parameters.

4.1.2. Dense Retrieval

In Section 2.2, we introduced multiple approaches that use deep learning for
retrieval under the term dense retrieval. The ones that we consider are all based
on the same principle: The documents in the knowledge base are projected
into an embedding space using a Transformer model and those closest to the
embedded claim are retrieved using MIPS. Our baseline retrieval method is

4https://haystack.deepset.ai/components/retriever#bm25-recommended, accessed 2022-02-
23
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DPR [39], where we use Haystack’s DensePassageRetriever5. For creating the
embeddings, we use DPR models pre-trained for QA hosted on Hugging Face
Transformers6 without �ne-tuning them.

4.1.3. Gold Retrieval

To �nish this section, we introduce the concept of gold evidence retrieval,
which, strictly speaking, is not a retrieval method at all. It is merely a tool to
synthetically create retrieval results with which entailment methods can be
tested. For doing so, we arti�cially enrich the retrieval results with the gold
evidence, i.e., the evidence that is required for verifying a claim. We experiment
with the following con�gurations:

• pure: In this setting, the gold evidence is the only evidence provided to
the model. It reduces the fact-checking problem to NLI, in that only the
relevant evidence is there, and the model solely needs to perform the
entailment without having to deal with noise.

• prepend: Here, the gold evidence is inserted at the beginning of the
retrieval results of another retrieval method. For example, we experiment
with data sets where the real retrieval was done using a sparse retriever
and the gold evidence is moved to the beginning. The results are like
pure gold retrieval results with noise following it. Hence, the entailment
model has to learn to ignore the noise.

• insert: This setting is identical to prepend, except that the gold evidence
is inserted at a certain rank p.

• random_insert: In this case, the gold evidence is randomly inserted
between ranks p0 and p1.

In Section 5.3.1, we will come back to these con�gurations when compiling
synthetic retrieval data sets. We will approximate uniformly distributed evidence
and construct another set, where the gold evidence is found only relatively far
in the back.

4.2. Entailment

Given a claim and the relevant evidence that has been retrieved in the previous
step, the entailment model predicts a veracity verdict. In this section, we explain

5https://haystack.deepset.ai/components/retriever#dense-passage-retrieval-
recommended, accessed, 2022-02-23

6facebook/dpr-ctx_encoder-single-nq-base for document encoding and
facebook/dpr-question_encoder-single-nq-base for claim encoding, accessed 2022-
02-23
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Preprocessing Pipeline

String
Preprocessing

Merging TokenisationClaim
Relevant 
Evidence

input_ids attention_mask

... ...

Raw Input Model Input

Figure 4.1.: Overview of the preprocessing pipeline that is run for every sample: The raw input
is �rst merged into one string. Then string preprocessing is performed, and, �nally,
it is tokenised to be input into the model.

how we perform the input preparation (4.2.1) and the training (4.2.2). Then,
we elaborate which e�cient Transformers we use for this task and how we
implement them (4.2.3).

4.2.1. Preparation

Before the input can be fed into the model, it has to be prepared. First, the
retrieval results from the document retrieval step have to be accessed. Then, a
preprocessing pipeline is run.

Accessing Retrieval Results

For performance reasons, the retrieval step saves only the IDs of the evidence
documents it deems relevant in a �le. To access the actual text, we implemented
both an accessor that fetches it from ElasticSearch and another one that loads
the whole data set into memory from the source �les and accesses it from there.
While the �le-based approach is faster for a su�ciently large number of claims,
it requires the whole data set to �t into memory. Therefore, we choose a method
for an experiment depending on the number of claims and evidence size. For
instance, the FEVER evidence base is only around 7GB on disk. Thus, we can �t
it into memory. However, the FEVEROUS base is around 46GB. Therefore, we
use the ElasticSearch-based accessing solution in this case.

Preprocessing Pipeline

For preprocessing, we implemented a modular pipeline that is depicted in
Figure 4.1. The following three steps are run sequentially:

1. Merging: We want to feed the entailment model the claim and the evid-
ence in one joint sequence without any intermediary padding. Therefore,
�rst, the claim and the evidence have to be merged into one string that
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Merging

Claim
Evidence 

Document 1
...

Evidence 
Document k

Evidence 
Document 2

SEP1 SEP2 SEP2 SEP2

Claim
Relevant 
Evidence

Merged
Sequence

Input

Figure 4.2.: Default merging method in the preprocessing pipeline (SepTokenMerger): The claim
and all evidence documents are concatenated with separator tokens between them.

can be input into the model. We implement two versions with various con-
�guration options. The �rst, ClaimOnlyMerger, completely disregards the
evidence and only feeds the claim into the model. We use it for claim-only
experiments, see Section 5.3.2. The more important one, SepTokenMerger
merges the claim and the evidence with a separator token SEP1 between
them, as depicted in Figure 4.2. It also supports separators between the
pieces of evidence (SEP2), as some pre-trained models we used were
trained like this. The output of merging is a single string per sample, i.e.,
one claim and its evidence.

2. String preprocessing: In this step, the merge outputs are preprocessed
on a string level. We remove some special characters and perform Unicode
normalisation.

3. Tokenisation: Finally, the strings are tokenised as usual for NLP models.
We use appropriate tokenisers from Hugging Face Transformers7 depend-
ing on the model that will be used later. We list them in Table 4.1. The
tokeniser’s output is �nally the input to the model. It contains at least
the input IDs of the tokens and the attention mask. For Longformer [8],
it also contains the global attention mask8.

In a vanilla Transformer with full self-attention, all tokens can attend to all
other tokens. With our pre-processing, this means that the evidence documents
need not be independent of each other. Not only can the claim attend to all
evidence and vice versa, but also all evidence can attend to all other evidence.

Additionally to the core functionality, we built a callback system into the pipeline
to collect statistics and intermediary outputs for analysis purposes.

7https://huggingface.co/docs/transformers/tokenizer_summary, accessed 2022-02-23
8for details, see Subsection 4.2.3
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Tokeniser t Based on Chars / Token ct Reference Tokens rt
RoBERTa BPE [77] 4.50 1.00Longformer
FNet SentencePiece [44] 4.08 0.91
Perceiver IO Byte Encoding 1.00 0.22
Big Bird SentencePiece [44] 4.55 1.01

Table 4.1.: Di�erent models use di�erent tokenisers. This table lists what they are based on,
how many characters one token contains on average, and to how many reference
tokens a token generated by the respective tokeniser corresponds.

Reference Tokens

The models we are evaluating use di�erent tokenisers. Due to the di�erent
mechanisms, the number of characters tokens represent and, hence, the amount
of information they contain di�er. As we examine how models perform relative
to the amount of evidence information provided to them, tokens are not directly
comparable to each other. Therefore, we convert tokens to reference tokens,
which are de�ned as the tokens produced by the RoBERTa tokeniser.

Given that a token generated by tokeniser t on average represents ct characters,
we de�ne the number of reference tokens a token generated by t corresponds
to as rt = ct/cRoBERTa. For example, an FNet token corresponds to only rFNet =
cFNet/cRoBERTa = 4.08/4.50 = 0.91 reference tokens. Of course, rRoBERTa = 1.

The converted tokens represent the same number of characters and, hence,
contain the same amount of information, no matter by which tokeniser they
were generated. Table 4.1 details to how many reference tokens the tokens
produced by the other tokenisers correspond.

4.2.2. Training

As the inputs are computed, the model can now be trained for the classi�cation
problem of entailment, i.e., returning a verdict of whether a claim is supported,
refuted, or, for some data sets, if not enough information is available. Unless
stated otherwise, all models were trained with the AdamW optimiser [51] and
a constant learning rate of 5e−6. The e�ective batch size for all experiments
was 8. If we could not �t a full batch into GPU memory, we performed gradient
accumulation9 accordingly. All models were trained on the designated training
splits of the data sets, and hyper-parameter tuning was done on the validation

9https://pytorch-lightning.readthedocs.io/en/latest/advanced/training_tricks.html#accumulate-
gradients, accessed 2022-04-15
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splits. In the following, we elaborate on the training objective and the resulting
loss function.

Objective

The measure most commonly used in the literature to compare multiple fact-
checking methods with each other is accuracy. However, since it is not a di�er-
entiable function, we train our models using cross-entropy loss. This standard
practice is motivated by a maximum likelihood estimation of the ideal paramet-
ers, as derived by Goodfellow et al. [25].

Given a labelled sample x = (c, y), where c is the claim and y the veracity
label, we encode y in a one-hot fashion in ȳ ∈ {0, 1}|C|, i.e., ȳi = [i = y]. The
output of the last layer of our model are unnormalised logits z ∈ R|C|. Using
the softmax function, they are scaled to be interpretable as probabilities and
collected in a prediction vector ŷ ∈ R|C| with

ŷi = softmax(zi) =
exp(zi)∑
i exp(zi)

(4.1)

where each entry ŷi is the model’s predicted probability that class i is the real
class y. Finally, the loss for one sample is computed as

L(ȳ, ŷ) = −
|C|∑
i=0

ȳi log ŷi (4.2)

and, given that ŷ = fθ(c, Ê ′c), the training optimisation objective becomes

θ∗ = arg min
θ

M∑
i=0

wiL
(
ȳ(i), fθ

(
c(i), Ê ′c(i)

))
. (4.3)

To account for class imbalance in the training data set, we set loss weights
inversely proportional to the class frequencies using the vector w ∈ [0, 1]M ,
whose components we set to

wi =
1∑M

j=0 1[yi = yj]
. (4.4)

Practically, we used the PyTorch implementation CrossEntropyLoss10.
10https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html, accessed 2022-

02-24
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4.2.3. E�icient Transformers

Traditional Transformer models build on full self-attention on the complete
input sequence, which, as we have shown in Subsection 2.1.3, results in quadratic
memory complexity with respect to the input length. This severely limits the
amount of evidence the model can process. The longest sequence length that
these models are usually trained on is 512 tokens11. As Figure 5.7b shows, using
longer sequence lengths with them results in infeasibly high memory usage on
our hardware. Hence, we experiment with models that mitigate this limitation. It
is intuitive to expect that using more evidence can improve prediction accuracy.
This hypothesis relies on two assumptions. First, models can, in fact, make
use of the evidence they receive as input. Second, the current sequence length
limitation is prohibitive in that it prevents models from seeing all the necessary
evidence, i.e., the gold evidence.

In Figure 4.3a, we depict an evaluation of RoBERTa [49] predictions on FEVER-
OUS [2]. It shows that samples for which the model has seen at least a part
of the gold evidence are much more likely to be correctly classi�ed. Hence,
it is reasonable to assume that the models actually use the evidence they see,
supporting assumption one.

The second assumption is addressed in Figure 4.3b containing an analysis of
where the gold evidence is located in the sequence that is put into the model.
The Kernel Density Estimate (KDE) plot shows the start, centre and end of the
gold evidence in the sequence tokenised with a RoBERTa tokeniser. The data is
for the FEVEROUS data set, where the evidence has been retrieved using BM25.
We �nd that the RoBERTa model will not see large parts of the gold evidence,
as it is cut o� at token index 512. Therefore, at least in this case, longer input
sequences might prove bene�cial.

The rest of the thesis elaborates on this idea and analyses in which settings
and to which extent the use of more e�cient Transformers that can deal with
longer sequence lengths can outperform traditional models. This subsection
explains the e�cient Transformer models we experiment with, starting with
Longformer. Detailed results will be reported in Subsection 5.3.3. An overview
of the hyper-parameters can be found in Table A.2.

Longformer

Longformer [8] is an obvious choice for our experiments, as its concept of global
attention tokens seems well suited for the entailment task. While it appears
essential for the claim to be able to attend to all evidence tokens, it might be

11see con�gurations in Section 5.3.2
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Figure 4.3.: Motivation for using longer sequences as inputs to the entailment model

less crucial for all pieces of evidence to attend to each other. To set the global
attention for claim tokens, we tokenise the merged string and use the statistics
collected in the pipeline to deduce which tokens the initial claim corresponds
to. In an ablation experiment (Section 5.3.5), we found it best to activate the
global attention only for the claim and no other special tokens.

We perform experiments with the Hugging Face implementation
allenai/longformer-base-409612 that was trained on MLM for sequences of
up to 4096 tokens. In terms of hidden dimension size, the number of attention
heads and hidden layers, the model is equivalent to roberta-base.

Big Bird

As Big Bird [99] is relatively similar to Longformer but di�erent in some import-
ant ways (see Section 2.2.3), we examine which in�uence these di�erences have
for our task. We use the Hugging Face implementation with the checkpoint
google/bigbird-roberta-base13, which has a hidden size of 768, 12 attention
heads and 12 layers. There is also a large version (google/bigbird-roberta-
large14 with a hidden size of 1024, 16 attention heads and 24 hidden layers),
but we only experiment with the base version as is it is approximately the same
size as the Longformer checkpoint and roberta-base. The model has been
pre-trained with MLM on English Wikipedia, bookcorpus [102] and cc_news15

on sequences of up to a length of 4096 tokens.
12https://huggingface.co/allenai/longformer-base-4096, accessed 2022-03-04
13https://huggingface.co/google/bigbird-roberta-base, accessed 2022-03-16
14https://huggingface.co/google/bigbird-roberta-large, accessed 2022-03-16
15https://huggingface.co/datasets/cc_news, accessed 2022-03-16
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Unfortunately, the Hugging Face implementation16 only supports ITC and
not ETC mode. Therefore, we cannot activate global attention for the claim
tokens and, hence, cannot make a perfect comparison with Longformer. The
attention comes in two implementations, original_full and block_sparse.
The contributors recommend using original_full for sequences shorter than
1024 tokens, as there is no bene�t in using block_sparse. For our experiments,
we still used block_sparse to ensure a fair comparison.

FNet

Our motivation for experimenting with FNet [45] comes from the major speed
bene�ts it brings despite its relatively simple architecture. We �ne-tuned the
models on our data sets and test the following checkpoints from Hugging
Face:

• fnet-base17: a model pre-trained on the C4 data set [66] with MLM and
NSP

• fnet-base-finetuned-mnli18: a �ne-tuned version of fnet-base on the
GLUE MNLI data set [89]

Both of these models were trained on a sequence length of only 512 tokens. As
we want to experiment with longer sequences, we have to extend the position
embeddings. We experiment with randomly initialising the extended position
embeddings (random) and with repeating the existing ones, as it was done by
Longformer [8] (repeat). We �nd the latter to work better in most cases. All
FNets are trained with a learning rate of 10−5 and an e�ective batch size of 8.
In initial tests, we �nd almost no di�erence in performance between the two
checkpoints, which is why we only use fnet-base for our �nal experiments.

Perceiver IO

Perceiver IO [36] is a potentially well-suited model for our experiments as it
puts forward a novel approach that di�ers from the other methods we consider
in that it provides an explicit mechanism for extracting information. Usually,
not all documents in the evidence base are necessary for verifying a claim.
Mostly, not even all the retrieved evidence is. The way our experiments are set
up, we feed complete documents, of which only a few passages are pertinent.
It is conceivable that the Perceiver IO encoder can be taught to extract the
relevant evidence and project it into latent space. The reasoning of whether it

16https://huggingface.co/transformers/v4.9.2/model_doc/bigbird.html, accessed 2022-03-28
17https://huggingface.co/google/fnet-base, accessed 2022-03-08
18https://huggingface.co/gchhablani/fnet-base-�netuned-mnli, accessed 2022-03-08
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supports or refutes the claim then happens in the Process module, which can
be signi�cantly smaller.

All our Perceiver IO models were trained with a learning rate of 10−5 and an
e�ective batch size of 16. We use the implementation and weights from the Hug-
ging Face model deepmind/language-perceiver19 that has been pre-trained
with MLM on English Wikipedia and C4 [66]. It has a maximum sequence
length of 2048 tokens, where each token is the raw UTF-8 encoding of an input
character. In the encoding phase, the input sequence is projected into a latent
space of size 256× 1280.

As 2048 Perceiver IO tokens only contain the information of roughly 455 ref-
erence tokens, we need to use larger versions for evaluating longer sequence
lengths. Like with FNet, we test extending them using repetition and random ini-
tialisation. We also experiment with linear and nearest-neighbour interpolation
since the other techniques do not train well within our training budget.

19https://huggingface.co/deepmind/language-perceiver, accessed 2022-03-10
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After having described the methodology, this chapter now elaborates on the
evaluation of our methods. We start with some practical aspects (5.1) and the
data sets on which we evaluate (5.2). We go on to present the results (5.3),
where we will �nd BM25 to work best for retrieval and that using e�cient
Transformers yields gains for entailment both in predictive and computational
performance. The best-performing model in our experiments is Longformer.
We then discuss our results (5.4) and, �nally, explore possibilities for future
work (5.5).

5.1. Practical Aspects

This section details the software and hardware setup we used for our experi-
ments to aid reproducibility.

5.1.1. So�ware

All our code is implemented in Python1. For retrieval, we use ElasticSearch2 as
the document storage and Haystack3 as the framework to access it. Our deep
learning models are built with PyTorch4, PyTorch Lightning5 and TorchMetrics6.
All Transformer model implementations are from Hugging Face Transformers7.
Deep learning models were trained using PyTorch’s Distributed Data Parallel
(DDP)8 with CUDA9. We tracked and visualised our experiments with Weights &

1version 3.9.5, https://www.python.org, accessed 2022-02-02
2version 7.10, https://www.elastic.co/elasticsearch/, accessed 2022-02-09
3version 1.1.0, https://haystack.deepset.ai, accessed 2022-02-09
4version 1.10, https://pytorch.org, accessed 2022-02-09
5version 1.5.5, https://www.pytorchlightning.ai, accessed 2022-02-09
6version 0.6.1, https://torchmetrics.readthedocs.io, accessed 2022-02-09
7version 4.15, https://huggingface.co/docs/transformers, accessed 2022-02-09
8https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html,

accessed 2022-02-09
9version 11.3, https://docs.nvidia.com/cuda/, accessed 2022-03-07
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Biases [9]10. Finally, we used the following packages for various utility functions:
numpy11, pandas12, seaborn13, matplotlib14 and loguru15.

5.1.2. Hardware

We ran our experiments on an Ubuntu16 server equipped with an Intel Core
i7-7820X CPU clocked at 3.60GHz, 64GB of RAM at 3GHz and two NVIDIA
GeForce RTX 3090 GPUs with 24GB of VRAM each, interconnected with an
NVLink.

5.2. Data

Of the various data set options presented in Section 2.2, we decided to evaluate
on FEVER [83], FEVEROUS [2] and FaVIQ [59]. This combination strikes a good
trade-o� between widely used and su�ciently challenging options.

5.2.1. FEVER

The FEVER (Fact Extraction and VERi�cation) data set [83] has been intensively
studied, and many fact-checking methods have already been evaluated on it
since its introduction in 2018 [7]. It forms part of KILT [62], a benchmark for
various knowledge intensive tasks. The FEVER claims were written by human
annotators based on a 2017 dump of around 50,000 popular Wikipedia pages as
the knowledge base. In contrast to its successor FEVEROUS [2], this �rst version
of the series only contains the introductory sections of the Wikipedia articles,
not the full documents. With a median length of only ˜|e| = 350 characters
and a mean length of ¯|e| = 548 characters, which corresponds to roughly
122 reference tokens, this makes the individual pieces of evidence e ∈ E
comparatively short. The training data set consists of around 145,000 claims,
of which 80,000 are supported, 30,000 are refuted, and for 35,000, there is not
enough information. The validation and test data sets consist of about 20,000
claims each, with balanced classes.

10version 0.12.9, https://wandb.ai/, accessed 2022-02-10
11version 1.21.4, https://numpy.org, accessed 2022-02-10
12version 1.3.5, https://pandas.pydata.org, accessed 2022-02-10
13version 0.11.2, https://seaborn.pydata.org, accessed 2022-02-10
14version 3.5.1, https://matplotlib.org, accessed 2022-02-10
15version 0.5.3, https://loguru.readthedocs.io, accessed 2022-02-10
16version 20.04, https://ubuntu.com, accessed 2022-04-15
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FEVER poses the fact-checking task explicitly as the combination of retrieval and
entailment. It provides for every claim c multiple evidence sets E

′(1)
c , . . . E

′(j)
c ,

each of which contains su�cient relevant evidence to verify the claim. Thereby,
the retrieval step can be trained in a supervised manner. In fact, FEVER retrieval
is annotated on a passage level, so the annotators even marked the passages
within e ∈ E

′(i)
c that contain the relevant information. However, we ignore this

for the purposes of our evaluation, as we are focusing on entailment rather than
on retrieval. For the three-way classi�cation problem of entailment, FEVER of
course also contains for every claim a label y ∈ C where C = {SUP,REF,NEI}.
Naturally, NEI claims have no evidence sets, i.e. j = 0. For non-NEI samples,
the mean number of evidence sets is j̄ = 1.85.

Typically, the data set is evaluated on LA and the so-called FEVER score, which
is a measure that takes into account both retrieval and entailment results.
Since we are focusing on the entailment component of the pipeline, we do not
compute it in our experiments. While sometimes precision, recall and F1-score
are computed, the balanced nature of the evaluation splits allows the intuitive
choice of accuracy.

It is worth noting that the FEVER data set has been thoroughly studied, and
several issues have been raised. Schuster et al. [76] �nd that claim-only methods,
i.e., methods that take as input only the claim and no evidence at all, achieve
very competitive performance. They trace this result not only to the implicit
world knowledge these methods possess (which are not an issue with the data
set per se) but also �nd idiosyncracies in the claims. For example, negation
phrases are highly correlated with the REF label. Further, Bekoulis et al. [7]
lament that FEVER should not be used as the only data set to evaluate fact-
checking systems since its claims are arti�cially generated and based only on
Wikipedia, positioning it relatively far from real-world claims. Finally, Bekoulis
et al. [7] note that only around 16% of the claims need multiple sources of
evidence, making FEVER essentially a single-hop data set. While these issues
pose real challenges, they are acceptable for the types of experiments we are
running.

5.2.2. FEVEROUS

FEVEROUS (Fact extraction and VERi�cation Over Unstructured and Structured
information) [2] is the third version of the FEVER [83] series, and it is designed to
be more challenging than its predecessors. As its name implies, it extends FEVER
by including not only unstructured but also structured information. By that,
the authors mean that, besides the Wikipedia articles’ texts, lists and tables are
also in the evidence base. Like its predecessors, the data set also contains labels
for the retrieval step, i.e., gold evidence in terms of text passages, list items or
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Figure 5.1.: Comparison of the number of reference tokens per evidence document for FEVER
[83] and FEVEROUS [2]. FEVEROUS documents are signi�cantly longer than FEVER
documents.

table cells that are relevant for verifying a claim. FEVEROUS consists of around
87,000 claims labelled with the same classes as FEVER (Supported, Refuted and
Not Enough Information). The authors claim to have taken special care to avoid
biases that could be exploited. Another important di�erence to FEVER is that
the FEVEROUS evidence base does not only contain the introductory sections
of the Wikipedia articles but the complete pages. Also, it consists of all articles
from the English Wikipedia, not only a small subset like FEVER [83].

These challenges, which render �nding the relevant pieces of evidence sig-
ni�cantly harder, are an important reason for why we chose to evaluate on
this data set. However, as the focus of this work does not lie on structured
information, we �lter out all claims with evidence sets that contain tables or
lists. Consequently, we evaluate on a subset of FEVEROUS with a total of 3,463
out of 7,891 validation and 29,169 out of 71,292 training claims. The following
statistics of the validation split of our subset show that FEVEROUS is signi�c-
antly larger than FEVER: While the mean number of evidence sets is j̄ = 1.78,
the mean length of an evidence document is ¯|e| = 2033 which corresponds
to 449 reference tokens. An illustration of the number of tokens per evidence
documents can be found in Figure 5.1.

5.2.3. FaVIQ

The FaVIQ data set [59], which was presented in 2021, is aimed to address some
of the shortcomings of FEVER. Most importantly, it aims to contain realistic
claims. The authors achieve this by constructing the data set from questions
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asked by real users who do not know the answers. Two types of sets exist: An A

set, which is constructed from ambiguous questions and an R set, which is made
up of regular questions. With a total of 188,000 claims, it contains approximately
as many samples as FEVER.

Like FEVEROUS, it is based on the newer, signi�cantly larger Wikipedia dump
from KILT [62], containing 5.9 million articles of full length – not only the
introductory section such as in FEVER. The authors claim that the task is, hence,
much more challenging. FaVIQ does not provide annotated gold evidence for
the retrieval component of the pipeline. It also reduces entailment to a two-way
classi�cation problem, where C = {SUP,REF}, dropping the class NEI.

In contrast to FEVER, FaVIQ claims are automatically generated from questions,
leading to homogeneous sentence structures and sometimes grammatical errors
or typos in the phrasing. Also, due to its novelty, little research exists about the
data set. We evaluate on it nonetheless, as the larger knowledge base is well
suited for our experiments.

5.3. Results

In this section, we report the results we achieved. Starting with the retrieval
results (5.3.1), we move on to the entailment baselines (5.3.2). Then, we report
the results of our complete fact-checking pipeline (5.3.3). Finally, we outline
computational costs (5.3.4) and detailed studies about noise resistance and
Longformer global attention (5.3.5).

5.3.1. Retrieval Results

While retrieval is not the main focus of this work, its outputs are the inputs
for the entailment and, thereby, its foundation. Thus, we report our results for
FEVER [83] and FEVEROUS [2] on the validation splits here. Since FaVIQ [59]
provides no retrieval labels, we cannot compute its evaluation measures.

Table 5.1 shows the results we achieved using ElasticSearch BM25 retrieval
(see Subsection 4.1.1) and DPR [39] (see Subsection 4.1.2). Of course, the higher
the number of documents considered (k), the better the results. In all settings,
BM25 outperforms the dense approach. We discuss potential reasons for this in
Subsection 5.4.1.

In order to assess whether it makes sense to use models that can handle longer
sequence lengths, it is important to know if the additional information would
even be helpful. This depends in part on the location of the gold evidence in the
tokenised sequence. We depict these location for BM25 retrieval in Figure 5.2a
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(a) FEVER BM25 retrieval: Almost all evidence is within a range that RoBERTa can still see.
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(b) FEVEROUS BM25 retrieval: A lot of evidence is retrieved after token 512.
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(c) FEVER Gold Far Back: Most evidence starts after token 512.
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(d) FEVER Uniform Gold: Gold evidence is uniformly distributed.

Figure 5.2.: These plots show where the gold evidence is located in the model input sequence
for di�erent retrieval settings.
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FEVER [83] FEVEROUS [2]
k ES DPR ES DPR

fully supported
1 37.26 36.35 73.50 38.18
2 47.73 45.08 81.26 46.35
5 60.44 53.59 86.87 54.25
10 68.95 58.70 89.37 58.88
20 75.26 62.95 91.12 63.27
50 82.82 68.03 93.62 68.57

oracle accuracy
1 58.18 57.57 77.33 47.13
2 65.16 63.39 83.97 54.11
5 73.63 69.06 88.77 60.87
10 79.30 72.47 90.90 64.83
20 83.51 75.30 92.41 68.58
50 88.55 78.69 94.54 73.12

Table 5.1.: Retrieval Results as fully supported and oracle accuracy within top k results: ES
denotes sparse retrieval using ElasticSearch and BM25, DPR is dense retrieval with
DPR [39]. We �nd that, in all settings, the simple sparse approach outperforms the
dense method.

and 5.2b. They are almost identical for DPR. We �nd that, while, for FEVER,
most gold is located before token 512, for FEVEROUS, there is a non-negligible
amount of evidence after that boundary.

To directly evaluate the usefulness of models that can handle longer sequence
lengths, we constructed synthetic retrieval results where the gold evidence was
inserted at certain ranks. The results are based on BM25 retrieval on FEVER.
They were then modi�ed with random_insert gold retrieval, as explained in
Subsection 4.1.3. We constructed the following splits:

1. Gold Far Back: By setting p0 = 5 and p1 = 7, we created retrieval results
where all the gold evidence lies just after the last token that RoBERTa
models with sequence lengths of 512 can see. Hence, in this situation,
these models will not see any gold evidence and, therefore, �nd themselves
in a claim-only setting. Since corresponding experiments have shown
quite bad results, we expect models with such short sequence lengths to
be unable to compete with longer ones. The distribution of gold evidence
is depicted in Figure 5.2c.

2. Uniform Gold: In this setting, the gold evidence is approximately uni-
formly distributed over a sequence of length 4096. We achieve this by
setting p0 = 0 and p1 = 30. For models to perform well on these results,
they have to be able to process the whole sequence and not just focus on
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some positions. The gold distribution is illustrated in Figure 5.2d.

5.3.2. Entailment Baselines

In order to adequately judge the performance of our methods, we compare
them to various baselines: random guessing, claim-only models and standard
methods with access to evidence.

Random Guessing

The lowest bar, which every model should beat, is random guessing. Since en-
tailment is a classi�cation problem, one would expect a probability for randomly
guessing correctly of p = 1/#classes. For FEVER [83] and FEVEROUS [2],
both of which have three classes, this results in an accuracy of 0.3̇. For FaVIQ,
with its two classes, it is 0.5.

Claim-only

Claim-only methods, sometimes called retrieval-free methods [97, 11], receive
as input only the claim and no explicit evidence whatsoever. To predict a claim’s
veracity, they have to either rely on the world knowledge encoded in their
parameters (implicit knowledge) or exploit biases in the data set. The latter is,
of course, an undesirable side e�ect of data sets that is present in FEVER [7],
but actively prevented in FEVEROUS [2].

Roberts et al. [70] showed that claim-only approaches could achieve surpris-
ingly good results. However, they found that only to be the case with the largest
con�guration of their model, the 11-billion-parameter Transformer T5 [66],
which can pack a lot of world knowledge into its parameters. Smaller models,
such as RoBERTa [49] (355M parameters) or BART [47] (110M parameters),
typically underperform without any explicit evidence. This has been experi-
mentally shown by the claim-only experiments with small Gopher models [65]
and the FaVIQ baseline [59].

For all of our baseline experiments, we use RoBERTa [49]. While we expect it
to underperform in a claim-only setting, it yields good results when provided
with explicit evidence, as exempli�ed by the GLUE MNLI task [89]17. It was also
used by FaBULOUS [12], the top-scoring team of the FEVEROUS [2] shared
task18. Concretely, we experiment with the following two con�gurations:

17https://gluebenchmark.com/leaderboard, accessed 2022-03-01
18https://fever.ai/2021/task.html, accessed 2022-03-01
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Method Input FEVER FaVIQ FEVEROUS
Random* - 33.3 50.0 33.3
RoBERTa** claim 66.0 56.0 57.1
Gopher† claim 51.1 - -
RoBERTa** claim + gold 95.7 - 85.3
Gopher† claim + gold 77.5 - -
Paper Baseline‡ claim + retrieved 51.4 66.9 -

Table 5.2.: Results of the entailment baselines: The columns show LA for the di�erent data
sets. All results refer to the validation split. For FaVIQ, the results are on the A set.
RoBERTa indicates our experimental results with RoBERTa large [49] (355M paramet-
ers, sequence length of 512 tokens), based on the checkpoint roberta-large-mnli
and �ne-tuned. The Gopher results (280B parameters) are from Rae et al. [65] and
were obtained using few-shot prompting.
*Theoretical results
**Our experimental results. No claim + gold results for FaVIQ, since there is no
annotated FaVIQ gold evidence.
†Results from Rae et al. [65], who only evaluated on FEVER.
‡Baselines of the data set papers. For FEVER: document and passage retrieval using
TF.IDF, entailment using an MLP on TF.IDF features and DA [58]. For FaVIQ: retrieval
using DPR [39] and entailment using BART [47]. No paper baseline for FEVEROUS
due to our own split.

• roberta-base19: 12 layers, 12 attention heads, 125M parameters
• roberta-large-mnli20: 24 layers, 16 attention heads, 355M parameters

Both con�gurations were trained with position embeddings for up to 512 tokens,
limiting the maximum sequence length to this value. For the hidden dimension,
both use a size of 768. Implementation-wise, we use ClaimOnlyMerger in the
merge step of the pre-processing pipeline. After the encoder part of the model, a
linear layer projects the hidden representations down to logits in the dimension
of the number of classes for the data set, i.e., two or three. Predictions are then
made through a softmax of the logits.

With Evidence

In this setting, we allow the model to use evidence, as most fact-checking meth-
ods do. To do so, a retriever, as described in Section 4.1, retrieves the evidence
relevant to the claim. Then, the claim and the evidence are pre-processed and
concatenated using SepTokenMerger. Finally, the tokenisation pads or truncates
the sequence to a pre-de�ned sequence length.

19https://huggingface.co/roberta-base, accessed 2022-03-01
20https://huggingface.co/roberta-large-mnli, accessed 2022-03-01

45

https://huggingface.co/roberta-base
https://huggingface.co/roberta-large-mnli


5. Evaluation

Model Seq. Len. LA Training Peak GPU Usage
Unit tokens % hours GB
RoBERTa-large 512 78.80 5.5 17.5
Longformer 512 79.05 5.1 11.3
Longformer 1024 86.01 8.6 15.6
Longformer 2048 89.97 16.2 16.0

Table 5.3.: Results on Gold Far Back: Longformer with longer inputs clearly outperforms
RoBERTa. LA reported on the validation split.

We also use RoBERTa [49] due to the aforementioned reasons. However, RoBERTa
has the important limitation of quadratic complexity in the input sequence
length, which it shares with all other traditional Transformers. Therefore, all
these baseline experiments are run on sequence lengths of only up to 512
tokens.

Results

Table 5.2 summarises the baseline results. We �nd that claim-only methods
perform signi�cantly worse than models with explicit evidence at their disposal.
Also, it becomes apparent that FEVER is already solved relatively well if gold
evidence is provided. While Gopher forms a strong baseline given that it is based
only on few-shot prompting, it is still clearly outperformed by the speci�cally
�ne-tuned RoBERTa.

5.3.3. Fact-Checking Results

In this section, we report the results of the complete fact-checking pipeline with
e�cient Transformers as entailment components. While these results depend
on the retrieval component, the focus is on entailment. To compare di�erent
entailment methods with each other, we evaluate them on the same retrieval
outputs. We start with the synthetic retrieval results Gold Far Back and Uniform
Gold (see 5.3.1). Then, we move to experiments based on real retrieval results
for FEVER, FaVIQ and FEVEROUS.

Gold Far Back

In an initial experiment to verify the usefulness of using longer sequence lengths,
we ran a RoBERTa baseline and a Longformer on the Gold Far Back input split.
Due to hardware constraints, and the quadratic development of memory usage
of RoBERTa models with respect to the sequence length, we were unable to
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Figure 5.3.: Accuracy vs. Sequence Length on Uniform Gold: Longformer and Big Bird are the
only models in our experiments that are able to make use of the additional gold
evidence they see. Longformer outperforms RoBERTa with it. The performance of
FNet and Perceiver IO decreased with additional evidence.

train RoBERTa on longer sequences. As the results listed in Table 5.3 show,
Longformer clearly outperforms RoBERTa when using the longer sequence
lengths. At equal sequence lengths of 512 tokens, Longformer performs about
as well as RoBERTa while training slightly faster and using considerably less
GPU memory.

Uniform Gold

In this experiment, we evaluate how well models are able to �nd the gold
evidence that is approximately uniformly distributed across the input sequence.
The prediction results are listed in Table 5.4 and visualised with respect to
the sequence length in Figure 5.3. Like in the previous setting, we �nd that
Longformer beats RoBERTa when allowed to use longer sequence lengths. Big
Bird, while showing increasing performance given more evidence, consistently
performs worse than Longformer. FNet clearly underperforms all models and
decreases in performance as the sequence length is increased. While Perceiver IO
starts with results that are closer to RoBERTa and Longformer, the performance
plummets with longer sequences and ends up close to random guessing in the
longest setting. All training details can be found in the appendix in Table A.1.

FEVER with BM25 Retrieval

Given our �ndings from the synthetic data sets and our computational budget,
we decided to focus our following experiments on Longformer. The �rst data
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Model Sequence Length Label Accuracy (LA)
Unit tokens ref. tokens %
RoBERTa-large 512 512 75.59
Longformer 512 512 74.03
Longformer 1024 1024 75.34
Longformer 2048 2048 77.70
Longformer 4096 4096 82.74
FNet 512 466 64.29
FNet 1024 932 60.68
FNet 2048 1864 55.80
FNet 4096 3727 55.66
Perceiver IO 2048 451 70.45
Perceiver IO 4096 901 60.86
Perceiver IO 8192 1802 41.18
Perceiver IO 16384 3604 35.36
Big Bird 512 517 68.11
Big Bird 1024 1034 69.37
Big Bird 2048 2068 69.64
Big Bird 4096 4137 74.08

Table 5.4.: Results on Uniform Gold: Tokens are the real sequence length of the model input
while reference tokens denote the equivalent number of reference tokens. Longformer
clearly outperforms all other methods.
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Model Seq. Len. FEVER FaVIQ FEVEROUS
Unit tokens LA in %
RoBERTa-base 256 73.61 62.63 65.35
RoBERTa-base 512 74.24 63.12 68.06
Longformer 256 73.06 63.99 65.32
Longformer 512 74.79 64.95 68.47
Longformer 1024 75.23 60.31 69.94
Longformer 2048 76.19 58.15 68.32
Longformer 4096 76.43 57.91 65.58

Table 5.5.: Results on FEVER, FaVIQ and FEVEROUS validation splits with BM25 retrieval:
Providing Longformer with longer input sequences increases performance up to a
certain point.

set on which we experiment with real retrieval inputs is FEVER. Table 5.5
lists the results of Longformer with BM25 retrieval on it. We �nd that longer
sequence lengths consistently improve performance. However, between 2048
and 4096 tokens, the di�erence is relatively small, indicating limited gains from
the additional evidence. Despite the simplicity of our retrieval method and
the fact that we use no passage retrieval or re-ranking at all, we achieve a
performance of up to 97-99% of the state of the art (MLA [43], e-FEVER [78]
and KGAT [50], see Table 2.2).

FaVIQ with BM25 Retrieval

The results for FaVIQ with BM25 retrieval are listed in Table 5.5. The LA values
refer to the validation split on the A set. Longformer with a sequence length
of 512 reaches approximately the performance of the baselines in the data set
paper, which is a validation accuracy of 65.1 with TF.IDF and BART [47].

However, we �nd that longer sequence lengths do not improve but rather hurt
performance. Unfortunately, the retrieval step for FaVIQ is not annotated, i.e.,
the data set does not provide the documents or passages that contain the gold
evidence. Therefore, we cannot trivially analyse whether the poor performance
is due to retrieval or entailment. Hence, we focus on other data sets for further
analysis and experiments.

FEVEROUS with BM25 Retrieval

Lastly, we evaluate longer sequence lengths on FEVEROUS with BM25 retrieval.
The results are depicted in Table 5.5. Since we are evaluating exclusively on text-
only claims, there is no related work to compare to directly. However, we can
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Figure 5.4.: Label Accuracy of FEVEROUS claims grouped by the length of the corresponding
gold evidence: RoBERTa and Longformer show comparable performance for claims
for which the gold evidence is short. However, the performance gap between Long-
former and RoBERTa gets larger with longer sequences. We attribute the increase
in the last group to the small number of samples in it. Not Enough Info claims were
excluded from this plot, as no gold evidence exists for them. The results are based
on BM25 retrieval (see Table 5.5).

conclude that there is a certain point up until using longer sequences improves
performance. After that, the performance goes down again. An analysis of the
accuracy depending on the length of the gold evidence is depicted in Figure 5.4.
Using Longformer with longer sequence lengths is especially bene�cial for
claims whose gold evidence is long. An example confusion matrix is illustrated
in Figure 5.5.

5.3.4. Computational Cost

Now that we have seen how the di�erent models perform in terms of prediction
accuracy, we will analyse the computational cost that comes with them. A �rst
overview of the model sizes is given in Figure 5.6, which depicts the number of
parameters of the models. In this respect, RoBERTa-large is clearly the largest
model we consider, followed by Perceiver IO. FNet has the fewest parameters,
and Big Bird, Longformer and RoBERTa-base are about in the middle. From a
global perspective, all our models are smaller by several orders of magnitude
than many of today’s huge models. T5 [66] has around 100 times as many
parameters as Longformer, GPT-3 [14] almost 1000 times as many.

To empirically measure the runtime performance of our models, we ran short
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Figure 5.5.: Confusion matrix on FEVEROUS BM25-retrieval with Longformer-1024: The class
Not Enough Info is almost never correctly predicted by this model.
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Figure 5.7.: Computational cost with respect to the number of input reference tokens: RoBERTa
scales quadratically. FNet, Longformer and Big Bird generally scale linearly. The
Big Bird forward pass duration is adversely a�ected by the attention mechanism
used, which is not ideal for shorter sequence lengths. For Perceiver IO, memory
usage increases linearly while forward pass duration stays almost constant.
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trainings on FEVER with a batch size of one to also �t long sequences. The
�ndings are presented in Figure 5.7. It is worth noting that these results depend
on the model implementations we used. Figure 5.7a shows the mean duration
of a forward pass depending on the model and the sequence length. Figure 5.7b
depicts GPU memory usage.

The results con�rm the theoretical �nding of the quadratic memory complexity
of RoBERTa. The longest sequence that we could �t into GPU memory with
RoBERTa-base was 3000 tokens long.

Longformer and Big Bird show linear growth of memory usage with the se-
quence length. However, we observe that Longformer also proves to be signi-
�cantly slower to train than RoBERTa for short sequences, rendering it less
bene�cial in this setting. For Big Bird, we observed that the implementation we
used (block_sparse) comes with a signi�cant runtime overhead that is only
amortised with longer sequences. This drawback can likely be mitigated by
using the original_attention implementation for shorter sequences.

For FNet, our �ndings support the authors’ claims: The model displays an
increase in time and memory requirements that appears linear in the sequence
length. Also, there do not seem to be large constants hidden in the Big-O
notation, as FNet proves to be the by far most lightweight model we evaluate.

Perceiver IO shows almost constant runtime and linearly increasing GPU
memory usage. That is due to its architecture, in which the core process module
is independent of the input size and is only a�ected by the latent size. The only
component that changes is the encoder cross-attention.

5.3.5. Detailed Studies

In this last subsection, we report the results of two detailed studies. The model
that performed best in our experiments was Longformer. One of its key innova-
tions is the global attention mask. In the �rst study, we look at how it a�ects
predictive performance.

Secondly, we study our models’ resistance to noise. This is motivated by the res-
ults showing that model performance does not always increase monotonically
with longer input sequences. In our experiments, longer input sequences con-
tained not only more evidence but also more noise. The second study examines
this e�ect.
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Claim SEP BOS EOS CLS LA
X X X X X 74.79
X X X X X 74.67
X X X X X 74.23
X X X X X 73.37

Table 5.6.: Ablation study about the performance impact of using global attention for speci�c
tokens: The checkmarks and crosses indicate whether the global attention was set
to true or false for the claim tokens or the special tokens SEP (separator), BOS
(beginning of sentence), EOS (end of sentence) and CLS (classi�cation). The column
LA indicates the validation accuracy of a Longformer on FEVER with BM25 retrieval.
The �rst row is the con�guration we used in the end. Therefore, its performance
matches the Longformer-512 result on FEVER in Table 5.5.

Input LA
claim 66.04
claim || BM25 results 73.69
claim || gold 95.77
claim || gold || BM25 results 86.47

Table 5.7.: Comparison of validation LA on FEVER with RoBERTa-256 depending on the input.
|| denotes concatenation. The claim-only setting performs worst. The best results
are obtained when the claim is fed in only with the gold evidence. If after the gold
evidence the other retrieval results are added, performance drops by almost ten
percentage points.

Longformer Global A�ention

In order to determine how important the global attention mask is for Longformer
to perform well, we conduct an ablation study where we experiment with
enabling and disabling it for the claim tokens and several special tokens. The
results are shown in Table 5.6. We �nd that setting the global attention to true

for the claim makes a di�erence, albeit relatively small. For all special tokens, it
seems to be better to set the global attention to false. However, there are only
minuscule di�erences between the experiments with the special tokens, which
might be due to random weight initialisations.

Noise Resistance

In this short analysis, we study the in�uence of additional evidence that is not
relevant for verifying a claim. In our formulation, we call that evidence noise,
which is the set E \Gc. For this evaluation, we train a RoBERTa model with a
sequence length of 256 tokens on FEVER entailment with varying inputs. All
models are �ne-tuned separately. We compare the following input settings:
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• claim: only the claim
• claim || BM25 results: the claim and BM25 retrieval results
• claim || gold: only the claim and the gold evidence
• claim || gold || BM25 results: the claim, the gold evidence, and noise

from the original BM25 retrieval results (with gold removed)

The results are shown in Table 5.7. We �nd that concatenating noise after the
gold evidence leads to a performance drop of almost ten percentage points. This
�nding is an indication that the model is not perfectly able to select the relevant
evidence from the input sequence, even if it is always located directly after the
claim.

5.4. Discussion

After having presented the results, we now turn to discussing them and drawing
our conclusions. We evaluate retrieval (5.4.1), the usefulness of evidence to
entailment models (5.4.2) and assess the models we used (5.4.3). Then, we review
the impact of using more e�cient Transformer models on the computational
cost (5.4.4) and the e�ects of feeding complete documents on interpretability
(5.4.5). To conclude this section, we discuss the overall usefulness of longer
sequences for improving predictive performance in fact-checking (5.4.6).

5.4.1. Retrieval

For retrieval, we found that sparse methods consistently outperformed dense
ones. On the one hand side, we attribute this to the fact that Wikipedia articles
are well named, in that their titles accurately describe what the article is about.
Secondly, FEVER and FEVEROUS contain many claims concerning named
entities that are often directly in the title of the relevant article. Lastly, DPR [39]
was developed for passages and not whole documents. It is conceivable that it
is challenging for the embedding model to project all relevant information in a
document into one embedding. Possibly, that is why the exact keyword matching
of BM25 works better. This explanation is supported by the observation that
the gap between sparse and dense retrieval is much larger for FEVEROUS, of
which the documents are much longer than those of FEVER. While we believe
that �ne-tuning DPR could have improved the results, we decided not to pursue
this path due to its signi�cant computational cost.

While the results we obtain with BM25 beat the baseline put forward by Thorne
et al. [83], they are far from state-of-the-art. For FEVER, Bekoulis et al. [7]
report the best approach at the time of their writing to be by Chakrabarty
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et al. [15]. It is a solution tailored to the data set that uses a combination of the
Google Custom Search API, Named Entity Recognition (NER) and dependency
parsing. Reportedly, it achieves a fully supported accuracy of 94.4 for k = 3.
However, for the purposes of our experiments, we only intended to compare
entailment models for a given retrieval method. Therefore, the simple baseline
we established was su�cient.

5.4.2. Usefulness of Explicit Evidence

An underlying assumption of this project was that models are, in fact, able to use
the evidence presented to them to verify claims. First, we presented a positive
indicator in Figure 4.3a. Then, in Table 5.2 we compare claim-only methods
with such that receive gold evidence. In that, we directly compare relying on
implicit knowledge to seeing explicit knowledge. We �nd the latter to clearly
outperform the former, showing how explicit evidence is useful. Finally, we can
say that the experiments Gold Far Back and Uniform Gold also show that it is
helpful for the models we examine and that it bene�ts the entailment results.

5.4.3. Models

The models we evaluated used a variety of di�erent techniques to reduce the
quadratic complexity of Transformers. As varied their concepts, so too did their
usefulness to our task. In the following, we assess the success we had with the
models and argue potential reasons.

RoBERTa The RoBERTa model proved to be a strong baseline that was not
easy to beat in predictive performance. However, due to its quadratic complexity,
it was prohibitively costly to upscale to longer sequence lengths. Hence, it could
not see more evidence than what �tted into its 512 tokens.

Longformer Longformer turned out to be the best-performing model for
our task. It proved to be quick to �ne-tune, was able to use the additional gold
evidence it saw when increasing its sequence length, and scaled linearly in the
input sequence length in terms of memory usage and forward pass time. In
terms of experimental conditions, it likely bene�ted from the fact that we could
�ne-tune it from weights that were trained for 4096 tokens.

As we have seen in the ablation study (Subsection 5.3.5), the global tokens do not
seem to be vital for it to perform well. The local and dilated window attention
seems to be enough to discover the relevant parts of the input sequence.
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Big Bird For Big Bird, too, we used a checkpoint that has been trained on a
sequence length of 4096 tokens. While we observe that the prediction perform-
ance increases with longer inputs, the model is outperformed by Longformer
by a consistent margin of 6-8% at all sequence lengths.

As our implementation did not support ETC mode, we could not enable global
attention for the claim tokens, which might have harmed performance. However,
as we have shown in Subsection 5.3.5, the e�ects of the global attention do not
seem pronounced enough to explain the di�erences we �nd between Longformer
and Big Bird. It appears as though the random tokens that Big Bird uses are not
helpful for the model either. We cannot completely explain the performance
gap and leave the reasoning for future work.

In terms of memory consumption, Big Bird behaves very similarly to Longformer.
For forward pass duration, the block_sparse implementation was very slow
for sequences of lengths 1024 and 2048, but it improved for 4096. We consider
this a non-issue, given that our focus lies on longer sequences and that for
shorter ones, the original attention implementation could be used.

FNet While our empirical analysis supports the authors’ claims about a small
computational footprint, in terms of predictive performance, FNet was appre-
ciably outperformed in all settings by other models. Adding more evidence
seemed only to worsen the results. It is worth noting that we �ne-tuned the
model from a checkpoint with only 512 tokens and, for longer sequences, exten-
ded the positional embeddings by repeating them. While this might explain why
it could not handle longer sequences well, it is no reason why FNet struggled at
its initial sequence length. However, given that FNet also seems to underper-
form RoBERTa on GLUE MNLI [89] by a substantial margin of around 20%21,
our results are not entirely unexpected.

Perceiver IO Our Perceiver IO checkpoint has been trained on 2048 tokens,
which, due to the model’s byte tokeniser, only corresponds to 451 reference
tokens. In this setting, Perceiver IO is the model that gets closest to RoBERTa-
large and Longformer in terms of predictive performance. However, we �nd
that its performance rapidly decreases when trained with longer sequences.

We attribute this to multiple factors. First, our experiments showed that Per-
ceiver IO is di�cult to �ne-tune to sequences longer than it was trained on.
Extending position embeddings using random initialisation, repetition, and
linear interpolation did not work well. The only method that trained reason-
ably within our computational budget was nearest neighbour interpolation. We

21https://paperswithcode.com/sota/text-classi�cation-on-glue-mnli, accessed 2022-03-17
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conjecture that the projection into latent space relies on the position embed-
dings, and the model needs to be re-trained more than others for this change of
sequence length. We believe the encoder module to be sensitive to changes in
the input and that it takes many iterations to recover from the change.

Secondly, for being able to retain the weights of the processing module, we had to
keep the latent array size the same. That, however, introduced a bottleneck that
we believe to have hurt performance. It is conceivable that this happens either
because the encoder has di�culties extracting the relevant information from the
input or because it could not be compressed in a way that the process models
could still understand. In any case, these issues are not inherent problems of the
model itself. With a higher computational budget, the model could be pre-trained
from scratch with MLM and a larger input and latent array. Alternatively, it
could be trained with a traditional tokeniser to accommodate more information
in shorter sequence lengths. Still, the issue of it being hard to �ne-tune to
di�erent input lengths remains.

In terms of computational cost, Perceiver IO showed desirable properties. Its
forward pass duration and GPU memory usage only increased relatively slowly
with the sequence length. However, it is worth noting that the latent size likely
also needs to be scaled up to accommodate longer input sequences. We believe
that the degree to which this is necessary is decisive for whether using Perceiver
IO can be useful as a more e�cient Transformer for fact-checking.

5.4.4. Reducing Computational Cost

One of our research questions was whether it is feasible to use more e�cient
Transformer models to reduce the computational cost while achieving the same
or similar accuracy as current models, i.e., in our case, RoBERTa.

In a setting where only the entailment component of a pipeline is replaced
by a more e�cient Transformer and the rest is left the same, we found this
rather not to be the case. FNet and Big Bird performed too poorly to match
RoBERTa’s predictive performance. Longformer outperformed it while using
less memory, but, in turn, it was signi�cantly slower. This might be advant-
ageous if the lower memory consumption allows for using larger batch sizes
or in an inference setting where memory is expensive. However, given our
results, it seems unlikely that there are signi�cant gains to be made. The most
promising option might be Perceiver IO, which, while achieving worse results
than RoBERTa-large by about 5% LA, used around one third less memory. In a
setting where some predictive performance should be sacri�ced for a smaller
computational footprint, it might prove bene�cial.

58



5. Evaluation

However, Longformer’s capability to handle longer documents allowed us to skip
the passage retrieval step while still obtaining performance very close to state-of-
the-art methods for FEVER. This signi�cantly reduces the computational costs
of the entire pipeline. The amount of the savings depends on the complexity of
the passage retrieval step in related work. KGAT [50] uses a dedicated LSTM
or BERT model for passage retrieval, while MLA [43] has a custom-made deep
method for it. With Longformer, we can remove these components completely
and thereby simplify and speed up the pipeline.

5.4.5. Interpretability

In a real-world scenario, users often want to understand why a model classi�ed a
claim as supported or refuted. This �ts the de�nition of interpretability by Biran
and Cotton [10]: "systems are interpretable if their operations can be understood
by a human, either through introspection or through a produced explanation". For
fact-checking, an intuitive way to give an explanation is to exhibit the concrete
passages of evidence the model considered to come to its verdict.

In our setting, the entailment model was always fed complete evidence doc-
uments, which could be rather long. In the end, the model predicted a class
without providing an explanation of which passages formed the basis for the
verdict. This is an inherent drawback of feeding whole documents. With pas-
sage retrieval, it is transparent for the user which parts of the evidence the
entailment model used to reach its verdict. If complete documents are fed, this
is not directly the case anymore. With our approach, the pipeline only exhibits
its sources on a document level.

5.4.6. Using Longer Sequences

Most importantly, we set out to research whether using longer input sequences
that potentially contain more gold evidence is helpful for entailment. We found
this to be the case with relatively short documents, such as with FEVER, and
longer documents, such as with FEVEROUS. When comparing the results of the
BM25 retrieval with the synthetic splits we constructed, it becomes apparent
that the advantages of longer input sequences are more pronounced if the
evidence is more spread out. This might be caused by either longer documents
or corresponding retrieval characteristics. In the case Gold Far Back, where
gold evidence only appears relatively late in the sequence (Figure 5.2c), we
see signi�cant improvements of Longformer-4096 over RoBERTa-512. This
is also the case when the gold evidence is spread out uniformly across the
sequence (Figure 5.2d). However, in the BM25 retrieval results that we examined
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(Figure 5.2), the gold evidence is mainly located at the beginning with a rapid
drop after around ranks 3 to 5.

Looking at the entailment results on the BM25 retrieval outputs listed in
Table 5.5, we observe that performance increases with longer sequences up
until a certain point, after which it starts decreasing again. We conjecture that
this behaviour is due to the tradeo� between additional information and noise.
While adding more gold evidence aids the model in its predictions, the longer
sequences also add noise that can confuse it. Our study about noise resistance
showed a drop in performance if noise is appended after the gold evidence.
Hence, we believe that performance starts decreasing once there is too little
gold evidence in the additional input to outweigh the added noise. The fact
that the noise hurts performance indicates that the models we examined are
not perfectly able to select the relevant evidence in the input sequence. If they
were, we would observe monotonically increasing performance with longer
sequences.

Taking this together, using longer sequence lengths can bene�t prediction
accuracy, especially when the data set consists of long documents or the retrieval
method produces relatively spread-out results.

5.5. Future Work

Given our �ndings, we propose four directions future work could explore:
considering multi-hop retrieval (5.5.1), improving models’ resistance to noise
(5.5.2), enhancing performance on the class Not Enough Information (5.5.3) and
studying interpretability (5.5.4).

5.5.1. Multi-Hop Retrieval

Using more e�cient Transformers allows entailment models to see more evid-
ence. Nonetheless, there are cases where they will fail. One of them is if the
gold evidence is not correctly retrieved in the �rst place and the model does
not have the necessary information in its implicit knowledge. Retrieval failure
is especially likely if a claim requires multi-hop reasoning. Our approach will
often not work in such a setting. Future work might explore incorporating
e�cient Transformers with dedicated multi-hop retrieval methods [97] or iter-
ative retrieval approaches that allow the entailment component to in�uence
the retrieval. Thereby, the retrieval step could make a more informed choice
of relevant evidence that is not only similar to the claim but also helpful for
reasoning about its veracity.
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5.5.2. Noise Resistance

In our detailed study about noise, we found that adding evidence that is not
relevant to a claim hurts prediction performance on RoBERTa. Future work
might elaborate on this issue by improving Transformers’ capacity to �nd the
relevant evidence in the input sequence and thereby increase their resistance
to noise. However, even if long-sequence models make mistakes, they can be
improved theoretically. Models with too short sequence lengths to even see the
gold evidence will never correctly classify the sample unless they make a lucky
guess.

5.5.3. Claims with Not Enough Information

As the example in Figure 5.5 illustrates, the class Not Enough Information (NEI)
is almost never correctly predicted by our models. The problem of knowing
what you don’t know has been recognised as challenging in related work for QA
[69] and fact-checking [65, 12]. For QA, multiple data sets [69, 30] and methods
[80, 32, 92] have already been developed to address it. While some aim to tackle
the problem using additional training data, others propose separate models that
predict whether the model’s response truly answers the question. Future work
could try to transfer these approaches to the fact-checking task to improve
model performance on predicting NEI.

5.5.4. Interpretability

Feeding complete documents and removing the explicit passage retrieval step
makes interpretability more challenging. The pipeline can not directly reveal
the speci�c parts of the evidence it considered for its verdict anymore. In future
research, one could try to develop methods by which entailment models can
disclose which parts of the input documents were relevant for the decision.
This could be achieved by highlighting the relevant parts in the documents
using attention activations22 [94] or more advanced relevancy analysis, such
as propagation based on the Deep Taylor Decomposition [16]. Alternatively,
entirely separate models could generate textual explanations for the verdict
[3].

22see https://github.com/jessevig/bertviz, accessed 2022-03-18
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This thesis project tackled the fact-checking task where claims are veri�ed
against an explicit knowledge base. Our goal was to investigate whether using
models that can handle longer input sequences for entailment would improve
predictive and computational performance. We experimented with the more
e�cient Transformer models Longformer [8], Big Bird [99], Perceiver IO [36]
and FNet [45]. These methods use di�erent techniques to achieve sub-quadratic
runtime and memory complexity in the input length. For our analysis, we
built a complete fact-checking pipeline consisting of document retrieval and
entailment. As our entailment models could handle long input sequences, it
was not necessary to use explicit passage retrieval. We evaluated our models
on the data sets FEVER [83], FEVEROUS [2] and FaVIQ [59].

For retrieval, we experimented with sparse (BM25 [71]) and dense (DPR [39])
approaches and found the former to outperform the latter in our setting. Hence,
we used it as the basis for all of our entailment experiments.

The focus of this work lay on analysing the e�ects of the more e�cient Trans-
former models in the entailment component. As a baseline, we compared them
to a RoBERTa [49] model that could handle only a sequence length of up to
512 tokens due to its quadratic memory complexity. Our e�cient Transformers
could handle up to 4096 tokens. After establishing that entailment models could
make use of explicit evidence, we found that providing more evidence was
helpful and allowed for outperforming our baseline on FEVER, FEVEROUS
and FaVIQ. However, this was only the case with Longformer. Big Bird, while
increasing in performance with longer sequences, was consistently outper-
formed. FNet’s results were signi�cantly worse than all other models. Perceiver
IO achieved comparable performance to RoBERTa at a sequence length of 512
tokens while using one third less memory. Nevertheless, we found it challenging
to extend it to longer input sequences within a limited hardware budget.

Removing the explicit passage retrieval step and, therefore, letting the selection
of relevant evidence to the entailment model requires future work to regain
interpretability. However, it also simpli�es the fact-checking pipeline and sig-
ni�cantly reduces its computational cost. We showed that, for FEVER, using
sparse document retrieval with Longformer achieves 97-99% of the performance
of state-of-the-art methods that use costly dense document retrieval, explicit
passage retrieval and a custom-tailored fact-checking approach.
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In conclusion, our work showed that using e�cient Transformers for fact-
checking can lead to gains in predictive performance and savings in computa-
tional cost. Furthermore, it allowed the entailment models to consider longer
evidence as input. Future work incorporating them with modern retrieval meth-
ods might achieve new levels of state-of-the-art performance.
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Appendices

A. Training Details

In this appendix, we disclose additional details about our training. Table A.1
contains more information about the training on the Uniform Gold data split.

Model Sequence Length Epochs Batch Size Training Peak GPU Usage
Unit tokens # # hours GB
RoBERTa-large [49] 512 3 2 7.1 16.6
Longformer [8] 512 3 2 7.7 11.0
Longformer [8] 1024 3 2 10.7 13.9
Longformer [8] 2048 3 2 17.3 19.7
Longformer [8] 4096 3 1 32.3 19.4
FNet [45] 512 3 8 2.7 10.8
FNet [45] 1024 3 8 5.2 14.4
FNet [45] 2048 3 8 5.6 21.4
FNet [45] 4096 3 4 8.8 21.9
Perceiver IO [36] 2048 6 16 5.0 13.1
Perceiver IO [36] 4096 6 16 5.3 14.4
Perceiver IO [36] 8192 6 16 5.9 17.0
Perceiver IO [36] 16384 3 4 5.3 9.3
Big Bird [99] 512 4 2 8.5 9.1
Big Bird [99] 1024 4 2 14.2 12.0
Big Bird [99] 2048 4 2 24.7 14.9
Big Bird [99] 4096 5 1 52.4 15.4

Table A.1.: Training Details of Uniform Gold

In Table A.2, we list the training hyper-parameters (e�ective batch size and
learning rate), the overall number of parameters and the sequence lengths of
the checkpoints for all models we experimented with.

Model RoBERTa Longformer Big Bird FNet Perceiver IO
Variant base large base base base -
E�ective Batch Size 8 8 8 8 16
Learning Rate 5e-6 5e-6 5e-6 1e-5 1e-5
Checkpoint (ref. tokens) 512 4096 4137 466 455
Number of Parameters 125M 355M 149M 128M 86M 211M

Table A.2.: Model Hyper-Parameters and Architecture Information
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B. Acronyms

BPE Byte Pair Encoding

CNN Convolutional Neural Network

CPC Contrastive Predictive Coding

DPR Dense Passage Retrieval

ETC Extended Transformer Construction

IR Information Retrieval

ITC Internal Transformer Construction

KDE Kernel Density Estimate

LA Label Accuracy

LSTM Long Short-Term Memory

MIPS Maximum Inner Product Search

ML Machine Learning

MLM Masked Language Modelling

MLP Multi-Layer Perceptron

NER Named Entity Recognition

NLI Natural Language Inference

NLP Natural Language Processing

NSP Next Sentence Prediction

QA Question Answering

RNN Recurrent Neural Network

RTE Recognising Textual Entailment
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C. Glossary

Claim, Hypothesis A statement that is to be veri�ed
Evidence, Premise A statement that is presumed to be correct and against

which claims are veri�ed
Retrieval The task of �nding evidence that is relevant to a given claim
Entailment, Verdict Prediction, Claim Verification, RTE The task of clas-

sifying whether a piece of evidence supports a claim or not [7]
Fact-Checking, Fact Verification Retrieval and entailment combined
Multi-Hop Reasoning Fact-checking, where only a set of connected evidence

pieces leads to the �nal verdict [57]
Fake News Detection Fact-checking applied to news articles or social media

posts [7]
E�icient Transformer Summary term for a Transformer-based model [87]

with sub-quadratic computational complexity in the input sequence length
[82]

Terms in a line separated by commas denote synonyms.
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